

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

UNIOSUN Journal of Engineering and Environmental Sciences. Vol. 3, No. 1. March. 2021

The Correlation among Cognitive Complexity Metrics in Algorithm
Analysis

Isola, E. O., Ogundoyin, I. K., Akanbi, C. O. and Adebayo, O. Y.

Abstract: In the early stage of software development, design complexity metrics are considered as
useful indicators of a software testing effort and quality attributes. However, existing works made
great efforts in establishing standardized metrics to evaluate the complexity of software, but there
have not been significant efforts in finding the correlations among the cognitive complexity
metrics. To address this challenge, this paper reviewed cognitive complexity metrics which
includes: Improved Cognitive Complexity Measure (ICCM), New Cognitive Complexity of
Program (NCCoP) and Modified Cognitive Complexity Measure (MCCM). The metrics were
employed to analyse some selected sorting algorithms implemented in a procedural C programming
language. The relationships among the aforementioned metrics were calculated using the Pearson
Correlation Coefficient Method. The results of the comparative examination of ICCM, NCCoP
and MCCM revealed that ICCM had more responsive measurements and that there exists a strong
relationship among the specified metrics. ICCM had the strongest significance among the
considered metrics based on the efforts in comprehending the information contained in the sorting
algorithm codes. The study contributed significantly to understanding and addressing the
complexity emanating from software development.
Keywords: Software complexity metrics, Algorithm, programming language, pearson
correlation, C programming

I. Introduction

Software complexity is part of software
engineering that deals with both the internal
and external quality of software. It creates
room for evaluation of system performance in
term of its effectiveness, maintenance,
reusability, testability, and modifiability. Most
people demand for software of better features
and improved qualities. Software complexity is
the level to which a system or component has
a design that is complex to comprehend and
validate [1]. High complexity may result in
more errors and technical hitches in
maintenance, understandability, modification
and testing effort [2]. Consequently, there has
been a great effort in establishing standardized

metrics to evaluate the complexity of
software. While some useful metrics have
been proposed to validate the software
complexity [3], for instance, Isola et al. in [4]
proposed an improved cognitive complexity
measure (ICCM), in the work variable name
used in code form an integral part in
understanding the code. Arbitrarily Named
Variable (ANV), Meaningful Meaning
Variable (MNV) and Cognitive weight of
Basic Control Structure (BCS) were employed
in calculating the effort needed in
understanding the information contained in
the software. The authors defined ICCM as
contained in eq. 1

ܯܥܥ ൌ ∑ ∑ ܸܰܣ͵) ൅ (ܸܰܯ כ ܹܿ(݇)௅ை஼௫
௏ୀଵ

௅ை஼௫
௄ୀଵ (ͳ)

where; the first summation is the line of code
from 1 to the last Line Of Code (LOC).
Premised on this, every Basic Control
Structure (BCS) is assigned a cognitive weight.
Either all the BCS‟s are in a linear layout or
some BCS‟s are embedded in others. For the
former, the sum of the weights of all n BCS‟s

Isola, E. O., Ogundoyin, I. K., Akanbi, C. O. and
Adebayo, O. Y. (Department of Information &
Communication Technology, Osun State
University, Osogbo, Osun State, Nigeria)

Corresponding Author: esther.isola@uniosun.edu.ng
Telephone Number: +2348033660008
Submitted:02-Oct-2020
Accepted: 01-Feb-2021

DOI: 10.36108/ujees/1202.30.0110

2

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

are added and for the later, cognitive weights
of inner BCS‟s are multiplied by the weights
of external BCS‟s [5]. Table 1 shows different
types of BCSs, with the corresponding
dedicated weight.

Furthermore, Jakharand in [6] and Rajnish in
[7] worked on New Cognitive Complexity of
Program Measure (NCCoP). The authors
explained NCCoP as a group of information
enclosed in the identifiers or variables. Thus,
the complexity completely depends on the
variables and the internal control structure
BCSs. Therefore, NCCoP method is to
measure the cognitive complexity of a
program [6, 7]. In the works, operators are not
well thought-out, the number of variables and
constants are just to be added up line by line
and multiplied by its BCSs weight. The merit
of this is that the weight of each LOC[8] can
be used in counting the utmost weight of a
unit to diminish the chances of severe errors
due to the higher complexity of a module. In
the work, the authors defined NCCoP as
formulated in eq. 2.

ܲ݋ܥܥܰ ∑ ∑ ݒܰ כ ௅ை஼௦(ܭ)
௏ୀଵ

௅ை஼௦
௄ୀଵ (2)

where LOCs is the number of lines in the
code, Nv is the number of variables in a
particular line of code, Wc is the weight (as
shown in Table 1) corresponding to the
particular structure of the line.

Misra in [9] proposed a Modified Cognitive
Complexity Measure (MCCM), In the work,
the considered cognitive[10] metrics were
applied to some selected sorting algorithm
codes written in C programming language and
then correlation was found among the
metrics. The proposed MCCM was
formulated as contained in eq. 3

ܯܥܥܯ ൌ (௜ܰଵ ൅ ௜ܰଶ) כ ௖ܹ (3)

Where: Ni1 is the total number of operators
and Ni2 is the total number of operands.

Existing works made great effort in
establishing standardized metrics to evaluate
the complexity of software but there have not
been effort to find the correlations among the
complexity metrics. This paper therefore,
addresses the problem of correlation among
the complexity metrics using ICCM, NCCoP
and MCCM by applying the metrics to some
selected sorting algorithms implemented in C
programming language in order to establish
correlation among the metrics

Table 1: BCSs with its Cognitive Weights (Wc)

Category BCS CWU

Sequence Sequence 1
Condition If-else / Switch 2

Loop For / For-in
While/do…While

3

Functional
activity

Functional- call
Alert/ prompt throw

2

Exception try-catch 1
Source: [8]

II. Materials and Methods

The ICCM, NCCoP and MCCM metrics
given in eq.1, eq.2 and eq.3 were implemented
on merge sort algorithm, heap sort algorithm,
selection sort algorithm, insertion sort
algorithm and bubble sort algorithm. Table 2
shows how ICCM was calculated for a bubble
sort algorithm

I. Results and Discussion

The cognitive complexity values for ICCM,
NCCoP and MCCM for five (5) sorting
algorithms are shown in Table 3. The graph
for comparison among the cognitive
complexity metrics are depicted in Figure. 1

A. The Correlation among Cognitive
Complexity Metrics

This study makes use of Pearson product-
moment correlation in testing whether there is
any relationship among ICCM (Improved
Cognitive Complexity Measure), NCCoP
(New Cognitive Complexity of Program)

3

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

Measure and MCCM (Modified Cognitive
Complexity Measure).

Table 2: Evaluation of Implementation for Bubble
Sort Algorithm using ICCM

S/N CODE 3ANV
+ MNV

Wc ICCM

1 #include <stdio.h> 0 1 0
2 void swap(int *xp, int

*yp)
2 1 2

3 { 0 1 0

4 int temp = *xp; 2 1 2

5 *xp = *yp; 2 1 2

6 *yp = temp; 2 1 2

7 } 0 1 0

8 void bubbleSort(
intarr[], int n)

5 1 5

9 { 0 1 0

10 int i, j; 7 1 7

11 for (i = 0; i < n-1;
i++)

12 3 36

12 for (j = 0; j < n-i-1;
j++)

12 3 36

13 if (arr[j] >arr[j+1]) 8 2 16

14 swap(&arr[j],
&arr[j+1]);

8 1 8

15 } 0 1 0

16 void printArray(
intarr[], int size)

4 1 4

17 { 0 1 0

18 int i; 4 1 4

19 for (i=0; i < size;
i++)

10 3 30

20 printf("%d " , arr[i]); 7 1 7

21 printf("n"); 3 1 3

22 } 0 1 0

23 int main() 1 1 1

24 { 0 1 0

25 intarr[] = {64, 34, 25,
12, 22, 11, 90};

2 1 2

26 int n =
sizeof(arr)/sizeof(arr[0]);

5 1 5

27 bubbleSort(arr, n); 4 1 4

28 printf("Sorted array:
\n");

3 1 3

29 printArray(arr, n); 4 1 4

30 return 0; 0 1 0

31 } 0 1 0

 TOTAL 183

Line 1: There is no variable. 0
Line 2: There are 2MNV. 2
Line 3: There is no variable. 0
Line 4 to 6: There are 2MNV. 2
Line 7: There is no variable. 0
Line 8: There is 1ANV and 2MNV. 3(1) + 2
= 5
Line 9: There is no variable. 0
Line 10: There are 2ANVand 1MNV.= 7
Line 11: There is 4ANV. 3(4) = 12
Line 12: There is 4ANV. 3(4) = 12.
Line 13: There is 2ANV and 2MNV. 3(2) + 2
= 8
Line 14: There is 2ANV and 2MNV. 3(2) + 2
= 8
Line 15: There is no variable. 0
Line 16: There are 4MNV. = 4
Line 17: There is no variable. 0
Line 18: There is 1ANV and 1MNV. 3(1) + 1
= 4
Line 19: There is 3ANV and 1MNV. 3(3) + 1
= 10
Line 20: There is 2ANV and 1MNV. 2(3) +1
= 7
Line 21: There is 1ANV. 3(1) = 3
Line 22: There is no variable. 0
Line 23: There is 1MNV. 1
Line 24: There is no variable. 0
Line 25: There is 2MNV. 2
Line 26: There is 1ANV and 2MNV. 3(1) + 2
= 5
Line 27: There are 1ANV and 1MNV= 4
Line 28: There is 1ANV. 3(1) = 3
Line 29: There are 1ANV and 1MNV. = 4
Line 30 to 31: There is no variable = 0

“The sign and the absolute value of a
correlation coefficient describe the direction
and magnitude of the relationship between
two variables.
Table 4 shows that the relationship between
ICCM and NCCoP is strong and positive. The
analysis presented in Table 4 reveals that the

4

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

relationships between ICCM and NCCoP are
significant since the P-value is 0.0001.

Table 3: Complexity values for different measures
ALGORITHM ICCM MCCM NCCoP

Merge sort algorithm 279 201 116

Heap sort algorithm 236 177 99

Selection sort algorithm 162 108 66

Bubble sort algorithm 183 74 61

Insertion sort algorithm 127 100 54

Figure 1: Relative comparison graph of Cognitive

Complexity Metrics

A strong positive relationship (r=0.976) is also
recorded between ICCM and MCCM as
presented in Table 4. The (0.005) P-value
shows that the relationships between ICCM
and MCCM are significant. Since the three (3)
metrics have a strong relationship with each
other, this implies that any combination of the
metrics can be used for the reusability and
maintenance of the software.

B. Regression Coefficient of Sorting
Algorithm

In regression with multiple independent
variables, the coefficient tells about how much
the dependent variable is expected to increase
when the independent variable is expected to
increases by one, holding all other
independent variables constant. Multiple linear

regression has more than two independent
variables are used to predict the value of a
dependent variable. The strengths of effect of
Improved Cognitive Complexity metrics
applied to sorting algorithm written in C
language was determined by the multiple
regression coefficients as presented in Table 5,
NCCoP has the strongest significant effect on
ICCM with a standardized estimate of 0.785.
The strengths of the effect of New Cognitive
Complexity of Program metrics applied to
sorting algorithm written in C language was
determined by the multiple regression
coefficients as presented in Table 6. Where
ICCM has the strongest significant effect on
NCCoP with a standardized estimate of 1.179.

The strengths of the effect of Modified
Cognitive Complexity Measure applied to
sorting algorithm written in C language was
determined by the multiple regression
coefficients as presented in Table 7.
According to Table 7 ICCM has the strongest
significant effect on MCCM with a
standardized estimate of 2.247.
C. Discussion

In this work, a series of experiments were
carried out to investigate the relationship
among some selected cognitive complexity
metrics. The cognitive complexity values of
the five (5) selected sorting algorithms were
summarized in Table 3. Table 5 showed the
statistics that were calculated in analysing C
codes to appraise ICCM, NCCoP and MCCM
measures. Merge sort algorithm had the
maximum value of complexity which was
(ICCM = 279), this indicated that the Merge
sort algorithm had the highest complexity
information among the selected sorting
algorithm codes.

Table 4: Pearson Correlation of Cognitive Complexity Metrics

0

200

400

1 2 3 4 5

M
et

ric
 v

al
ue

s

Number of trial

Cognitive Complexity
Metrics

ICCM

NCCoP

MCCM

5

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

 ICCM NCCoP MCCM
ICCM Pearson Correlation 1 .996** .976**

Sig. (2-tailed) .000 .005
N 5 5 5
Pearson Correlation .996** 1 .963**

NCCoP Sig. (2-tailed) .000 .008
N 5 5 5
Pearson Correlation .976** .963** 1

MCCM Sig. (2-tailed) .005 .008
N 5 5 5

Correlation is significant at the 0.01 level (2-tailed)

Table 5: Regression Coefficient of Dependent Variable ICCM for each sorting Algorithm written in C
Language

Model Unstandardized Coefficients Standardized
Coefficients

 Sig.

B Std. Error Beta
 T
1 (Constant) -2.978 9.710 -.307 .788

NCCoP 1.955 .392 .785 4.990 .038
MCCM .271 .194 .219 1.394 .298

Table 6: Regression Coefficient of Dependent variable NCCoP for each sorting algorithm written in C
language

Model Unstandardized Coefficients Standardized
Coefficients

 Sig.

B Std. Error Beta
 T
1 (Constant) 2.613 4.527 .577 .622

MCCM -0.93 .117 -.187 -.791 .512
ICCM .473 .095 1.179 4.990 .038

Table 7: Regression Coefficient of Dependent variable MCCM for each sorting algorithm written in C
language

Model Unstandardized Coefficients Standardized
Coefficients

 Sig.

B Std. Error Beta
 T
1 (Constant) -5.679 25.451 -.223 .844

ICCM 1.820 1.306 2.247 1.394 .298
NCCoP -2.574 3.252 -1.276 -.791 .512

MCCM with a value of 201 and NCCoP with
a value of 116 were also able to show that, but
ICCM consider the effort for comprehending
the code and the information contained in
software. ICCM for Insertion sort algorithm
had the least value of 127 which implied lesser
complexity information in how the user can
simply comprehend some functions in the
code, MCCM with a value of 100 was able to
show it too but NCCoP with value of 54 was
not able to show this. ICCM gave exact result
compared to NCCoP and MCCM because
ICCM considered the effort for
comprehending the code and information

contained in software. Since the three (3)
metrics had strong relationship with each
other, this implied that any combination of
the metrics can be used for the reusability and
maintenance of the software.

III. Conclusion

The result of correlation among cognitive
complexity showed that ICCM demonstrated
the complexity of the program undoubtedly
and accurately than other considered cognitive
measures. The metrics were evaluated by
dissimilar online sorting algorithm codes
written in C programming language to
establish reusability and maintenance

6

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

measures and also, that there exists a level of
correlation among the measures. The
comparative examination of the
implementation of ICCM against NCCoP and
MCCM revealed that ICCM had more
responsive measurement and that there exists
a strong relationship among the specified
metrics. ICCM had the strongest significant
effects on MCCM, NCCoP and ICCM
considering the efforts in comprehending the
information contained in the code.

References

[1] Kehinde, A.S., Monsurat, O.B., Isola, E.
O., Olabiyisi, S.O., Omidiora, E.O. and Oyeleye,
C.A. “Object Oriented Programming Languages
For Search Algorithms in Software Complexity
Metrics”, International Research Journal of Computer
Science , vol. 6, no. 4, 2019, pp. 90–101.

[2] Syed, T.R. and Maheswaran, K. “Software
Cognitive Complexity Metrics for OO Design: A
Survey”, International Journal of Scientific Research in
Science, Engineering and Technology (ijsrset.com), vol.3,
issue 3, 2017, pp. 691 – 698.

 [3] Kushwaha D.S. and Misra A.K (2006): “A
modified cognitive information complexity
measure of software”,
https://doi.org/10.1145/1108768.1108776,
Accessed January 2006.

 [4] Isola, E.O, Olabiyisi, S.O, Omidiora, E.O,
Ganiyu, R.O, Ogunbiyi, D.T and Adebayo, Y.O
“Development of an Improved Cognitive
Complexity Metrics for Object Oriented Codes”,
British Journal of Mathematics & Computer Science, vol.
18, no. 2, 2016, pp. 1 – 11.

[5] Isola, E., Olabiyisi, S., Omidiora, E. and
Ganiyu, R. “Performance Evaluation of Improved
Cognitive Complexity Metric and Other Code
Based Complexity Metrics”, Anale. Seria Informatică.
vol. XVI, series 16th, 2018, pp. 114–119.

[6] Jakhar, A.K., and Rajnish, K. “A New
Cognitive Approach to Measure the
Complexity of Software”, International Journal of

Software Engineering and its Applications, vol. 8, no. 7,
2014, pp. 185–198.

[7] Jakhar, A.K. and Rajnish, K. “Measuring
Complexity, Development Time and
Understandability of a Program: A Cognitive
Approach”, International Journal of Information
Technology and Computer Science, vol. 6, no. 12, 2014,
pp. 53–60.

[8] Arockia, S. and Aloysius, A. “Aspect
Oriented Programming - Cognitive Complexity
Metric Analysis Tool”, International Journal of
Scientific Research in Computer Science, Engineering and
Information Technology, vol. 3, Issue 1, 2018, pp. 480
– 486.

[9] Misra, S. “Modified Cognitive Complexity
Measure”, Computer and Information Sciences –
International Symposium, Istanbul Turkey, November
1 – 3, 2006, pp. 1050-1059.

[10] Jakhar, A.K and Kumar, R., “A cognitive
measurement of Complexity and Comprehension
for Object -oriented Code”, International Journal of
Computer, Electrical, Automation, Control and
Information Engineering, vol.10, no.3, 2016, pp.643-
650.

