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Development of an Order (k+3) Block-Hybrid Linear Multistep Method for 

the Direct Solution of General Second Order Initial Value Problems 

Muritala, F., Kolawole, M.K., Oyedeji A.A., Lawal, J.O., Alaje A.I. 

Abstract: Block hybrid linear multistep method was proposed to overcome the Dahl Quist order 

barrier for linear multistep methods. This research aims to answer questions relating to the 

convergence, accuracy, and effectiveness of the block hybrid method when utilized to obtain the 

solution of Initial Value Problems (IVPs). In this research, an order (k+3) block hybrid method 

applicable to obtain the direct solution of IVP’s of ordinary differential equations (ODEs) is 

presented. Collocation and interpolation of power series at finely selected grid points were used to 

improve the method's consistency, convergence, accuracy and zero stability. Linear problems were 

solved to show the accuracy and efficiency of the proposed method, and the error obtained from the 

comparison of exact and approximate results shows that the proposed method is effective in solving 

the class of problem. 
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I. Introduction 

In this research work, we consider an 

approximate solution of general second-order 

initial value problems (IVPs) of the form 
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f is continuously differentiable on the given 

interval [𝑎, 𝑏]. An ordinary differential 

equation is an equation which has all its 

dependent variables and its derivatives as a 

function of its independent variable [1]. 

Equation (1) has a wide range of applications 

because many problems that are encountered 

in sciences, real-life, control theory, and 

engineering are modelled into Differential 

Equations. This is why the numerical solution 

of (1) is of great interest to researchers such as 

[2]. 

Since only few of these problems can be solved 

analytically, there is need to study numerical 

methods capable of handling the problems 

such as the one applied by [3].  

Conventionally, equation (1) is reducible to a 

first-order ODE and appropriate numerical 

methods such as the Euler method can be used 

to solve the resultant system [4]. The reduction 

process and the setbacks of this approach have 

been discussed by numerous authors among 

them is [5]. To speed up computation, achieve 

better accuracy, reduce computational time 

and eliminate overlapping of solution model, 

Block methods for approximating the 

numerical solution of equation (1) have been 

vastly explored in literature [6]. According to 

[7] and [8], block-hybrid methods were first 

presented to overcome zero stability barriers 

that happened in block methods indicated in 

[9], while hybrid methods were first introduced 
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to overcome zero stability barriers that 

occurred in block methods mentioned in [8]. 

The method of interpolation and collocation 

of the power series approximation to generate 

a continuous Linear Multi-Step Method 

(LMM) has been adopted by many scholars 

[10]. For the direct solution of second-order 

ordinary differential equation, a single-step 

hybrid-block technique of order five was 

developed by researcher such as [11]. In this 

research, a block hybrid approach of order 

(k+3) suitable for direct computation of the 

solution of second-order IVP’s was developed. 

The developed scheme was extended to two 

presented problems and the convergence of 

the approximate solution to the exact solution 

shows that the method is elegant. 

II. Materials and Methods 

A. Derivation of the Method  

As an approximate solution of equation (1), we 

assumed a power series of a single variable.  
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Where ja are the real unknown parameters to be 

determined and sr + is the sum of the number 

of interpolation and number of collocation 

points? The first and second derivatives of (2) are 

given as; 
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The comparison of (4) and (1) gives rise to 


−+

=

−
•

−=
1

2

2 )5()1(),,(
sr

j

j

j xajjyyxf

Equation (2) is collocated at
jnx +

for
10

1
,0=j  

and (5) is as well collocated at

.2,
10

11
,1,

10

1
,0, =+ jx jn . This gives rise to a 

system of nonlinear equations 

)6(bAx =

Where the value of A is given below 
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Computing 6)1(0, =jj  in equation (6) above 

using the method of matrix inversion and then 

substituting into the proposed formulae from 

equation (2) gives the continuous formulae 

expressed as follows. 
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Where the approximate solution of the IVP is 

denoted by y(x), 
jj and are the coefficients that 

are continuously differentiable. Since (7) is 

continuous and differentiable, then 0 and 0
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are not both zero. The block method is presented 
as a single r-point multistep method of the form;  
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The obtained coefficients of 
jny +
and

jnf +
, are 

substituted into the continuous scheme in 

equation (7) and are in turn evaluated using non-

interpolating points that are 
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n xxxxx  yields the following 

derivative scheme presented in equation (9) to 

(11); 
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The first derivative is obtained by differentiating 
the continuous scheme in equation (7) with 
respect to x and the results are evaluated at all 

interpolation and collocation points 
10
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+n

n xx  

and .2
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n xxxxx respectively which 

give rise to equations (12-16); 
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And the proposed Block-Hybrid method is 

given as: 
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B.  The Block's Analysis 

 

i.   The Block’s Order and Error Constant

 

Let   be a linear difference operator on the 
method defined as: 
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Where )(xy is a continuously differentiable 

function on the interval ],[  Expanding (22) 

using Taylor’s series about y(x) and collecting the 
coefficients of power of h yields; 
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Thus the block schemes are of order 𝑝 if 

01210 ===== +PCCCC   and 2+PC  is not 

equal to zero, therefore 2+PC called the error 

constant. Thus, the error due to truncation at the 

local level is )(0)( 322
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The order of the block is p=5 and the error 
constants obtained by comparing coefficients of 
h is: 
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ii.  Consistency 

A linear Multistep Method (LMM) is said to be 

consistent if order 1p  and the following 

axioms are satisfied; 
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the characteristics polynomial of the first and 
second order of the proposed method 
respectively. Making reference to [12], an 

associated block method is consistent if 1p , 

since the proposed method is of order p=5, it is 
concluded that the method is consistent. 
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Be a single block r-point multistep technique. 
Applying the block in equation (21) we have; 
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Since there exist no roots greater than 1= this 

implies the zero-stability of the derived Block 
Hybrid Method. 

iv. Convergence 

Fatunla (1973) stated that consistency and zero 
stability are the necessary and sufficient 
conditions required for the linear multistep 
method (LMM) to be convergent.   

 

C.  Implementation of the Method 

The performance of the method is tested on 

some linear real-life problems and a system of 

equations of second-order initial value problems. 

The results obtained were compared with the 

exact solution to determine the absolute errors. 

i. Application 

In this section, the potency and the accuracy of 

the proposed numerical scheme are validated by 

applying the method to solve different problems 

resulting from areas of application. The obtained 

solution is compared with the exact solution to 

know the absolute error. 

ii. Cooling Problem 

The ODE governing the reduction in 

temperature )(xy  of a body placed in a certain 

room after some period x is given as

0)()(3 =+
•••

xyxy . 

Subject to the conditions

35)4log6(,60)0( == eyy  
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The exact solution to the problem is 
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The governing ODE is restructured to suit the 
computation of the proposed scheme such that
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1.0=h  Is chosen as step size and the results 
obtained at various points of h are presented on 
table1. 

iii. Slightly Stiff linear problem 

),()( xyxy
•••

=  

With the initial condition 

1.0,1',0)0( =−== hyy                    (28) 

The exact solution is 

xexy −=1)(  

The obtained results at various points of h are 

similarly presented in Table 2. 

iv. Maple 18 Algorithm for problem 1 

The following algorithm is applicable in 

generating the approximate results of problem 1 

presented in Table 1. 

Digits: = 30: N: = 10: h := 1/N: x [0] := 0: y [0] 
:= 60: z [0] := -80/9: 
A := y[n+1] = -
(5/24)*f[n]*h^2+(55/108)*f[n+1]*h^2+(17/41
04)*f[n+2]*h^2+(290/513)*f[n+1/10]*h^2-
(10/27)*f[n+11/10]*h^2+y[n]+z[n]*h, y[n+2] 
= -
(26/33)*f[n]*h^2+(20/27)*f[n+1]*h^2+(32/51
3)*f[n+2]*h^2+(880/513)*f[n+1/10]*h^2+(80
/297)*f[n+11/10]*h^2+y[n]+2*z[n]*h, 
y[n+1/10] = (41431/13200000)*f[n]*h^2-
(1039/5400000)*f[n+1]*h^2-
(509/205200000)*f[n+2]*h^2+(19471/1026000
0)*f[n+1/10]*h^2+(941/5940000)*f[n+11/10]*

h^2+(1/10)*z[n]*h+y[n], y[n+11/10] = -
(299959/1200000)*f[n]*h^2+(3528481/540000
0)*f[n+1]*h^2+(1039511/205200000)*f[n+2]*h
^2+(6749501/10260000)*f[n+1/10]*h^2-
(249139/540000)*f[n+11/10]*h^2+y[n]+(11/1
0)*z[n]*h, z[n+1] = -
(5/12)*h*f[n]+(38/27)*h*f[n+1]+(1/108)*h*f[
n+2]+(25/27)*h*f[n+1/10]-
(25/27)*h*f[n+11/10]+z[n], z[n+2] = -
(29/33)*h*f[n]-
(44/27)*h*f[n+1]+(131/513)*h*f[n+2]+(800/5
13)*h*f[n+1/10]+(800/297)*h*f[n+11/10]+z[
n], z[n+1/10] = (30451/660000)*h*f[n]-
(64/16875)*h*f[n+1]-
(499/10260000)*h*f[n+2]+(56003/1026000)*h
*f[n+1/10]+(1853/594000)*h*f[n+11/10]+z[n]
, z[n+11/10] = -
(24959/60000)*h*f[n]+(49247/33750)*h*f[n+1
]+(94501/10260000)*h*f[n+2]+(949003/10260
00)*h*f[n+1/10]-
(47377/54000)*h*f[n+11/10]+z[n]:  

for n from 0 by 2 to N do f[n] := -(1/3)*z[n]; 
f[n+1/10] := -(1/3)*z[n+1/10]; f[n+10*(1/10)] 
:= -(1/3)*z[n+10*(1/10)]; f[n+11/10] := -
(1/3)*z[n+11/10]; f[n+2] := -(1/3)*z[n+2]; P := 
fsolve({A}); Q := eval([y[n+1], y[n+2], 
y[n+1/10], y[n+11/10], z[n+1], z[n+2], 
z[n+1/10], z[n+11/10]], P); y[n+1] := Q[1]; 
y[n+2] := Q[2]; y[n+1/10] := Q[3]; y[n+11/10] 
:= Q[4]; z[n+1] := Q[5]; z[n+2] := Q[6]; 
z[n+1/10] := Q[7]; z[n+11/10] := Q[8] end do: 
> for j from 0 to N do y[j] := evalf[20](y[j]) end 
do; 
 

v. Maple 18 Algorithm for Problem 2. 

Similarly, the results of problem 2 presented in 

Table 2 is obtained using the following 

algorithm. 

> Digits: = 30: N: = 10: h := 1/N: x[0] := 0: y[0] 
:= 0:  z[0] := -1: A := y[n+1] = -
(5/24)*f[n]*h^2+(55/108)*f[n+1]*h^2+(17/41
04)*f[n+2]*h^2+(290/513)*f[n+1/10]*h^2-
(10/27)*f[n+11/10]*h^2+y[n]+z[n]*h, y[n+2] 
= -
(26/33)*f[n]*h^2+(20/27)*f[n+1]*h^2+(32/51
3)*f[n+2]*h^2+(880/513)*f[n+1/10]*h^2+(80
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/297)*f[n+11/10]*h^2+y[n]+2*z[n]*h, 
y[n+1/10] = (41431/13200000)*f[n]*h^2-
(1039/5400000)*f[n+1]*h^2-
(509/205200000)*f[n+2]*h^2+(19471/1026000
0)*f[n+1/10]*h^2+(941/5940000)*f[n+11/10]*
h^2+(1/10)*z[n]*h+y[n], y[n+11/10] = -
(299959/1200000)*f[n]*h^2+(3528481/540000
0)*f[n+1]*h^2+(1039511/205200000)*f[n+2]*h
^2+(6749501/10260000)*f[n+1/10]*h^2-
(249139/540000)*f[n+11/10]*h^2+y[n]+(11/1
0)*z[n]*h, z[n+1] = -
(5/12)*h*f[n]+(38/27)*h*f[n+1]+(1/108)*h*f[
n+2]+(25/27)*h*f[n+1/10]-
(25/27)*h*f[n+11/10]+z[n], z[n+2] = -
(29/33)*h*f[n]-
(44/27)*h*f[n+1]+(131/513)*h*f[n+2]+(800/5
13)*h*f[n+1/10]+(800/297)*h*f[n+11/10]+z[
n], z[n+1/10] = (30451/660000)*h*f[n]-
(64/16875)*h*f[n+1]-
(499/10260000)*h*f[n+2]+(56003/1026000)*h
*f[n+1/10]+(1853/594000)*h*f[n+11/10]+z[n]
, z[n+11/10] = -
(24959/60000)*h*f[n]+(49247/33750)*h*f[n+1
]+(94501/10260000)*h*f[n+2]+(949003/10260
00)*h*f[n+1/10]-
(47377/54000)*h*f[n+11/10]+z[n]: 

for n from 0 by 2 to N do f[n] := z[n]; f[n+1/10] 
:= z[n+1/10]; f[n+10*(1/10)] := 
z[n+10*(1/10)]; f[n+11/10] := z[n+11/10]; 

f[n+2] := z[n+2]; P := fsolve({A}); Q := 
eval([y[n+1], y[n+2], y[n+1/10], y[n+11/10], 
z[n+1], z[n+2], z[n+1/10], z[n+11/10]], P); 
y[n+1] := Q[1]; y[n+2] := Q[2]; y[n+1/10] := 
Q[3]; y[n+11/10] := Q[4]; z[n+1] := Q[5]; 
z[n+2] := Q[6]; z[n+1/10] := Q[7]; z[n+11/10] 
:= Q[8] end do; 

> for j from 0 to N do y[j] := evalf[20](y[j]) end 
do; 

III. Results and Discussion 

The results obtained from the proposed method 

with step number two and accuracy order five 

were compared with the exact solution and other 

methods. The accuracy of the developed method 

was examined using two different problems and 

their corresponding results are discussed below 

In Table 1, the absolute error signifies that the 

approximate solution accelerates and converges 

to the exact solution with minimal error. 

It was observed from table 2 that the greatest 

error recorded from the proposed method is 

7.76587 E-11 which shows that the accuracy of 

the proposed method is to a great extent.

Table 1: Numerical Results of Problem 1 

X Exact Results Computed Results Absolute Error 

0 60 60 0 

0.1 59.125762679520157388 59.125762679519946596 2.1079E-13 

0.2 58.280186267509806339 58.280186267508610635 1.1957E-12 

0.3 57.462331147625588618 57.462331147622161666 3.4269E-12 

0.4 56.671288507811932107 56.671288507805616398 6.3157E-12 

0.5 55.906179330416375308 55.906179330406069385 1.0305E-11 

0.6 55.166153415412849564 55.166153415398000705 1.4848E-11 

0.7 54.450388435647511050 54.450388435627149172 2.0361E-11 

0.8 53.758089023057298472 53.758089023030964860 2.6333E-11 

0.9 53.088485884845809762 53.088485884812653343 3.3156E-11 
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Table 2: Numerical Results of Problem 2 

X Exact Results Computed  Results Absolute Error 

0.1 0.10517091807564762481 0.10517091809570308609 1.57030 E-11 
0.2 0.22140275816016983392 0.22140275827765879433 7.76587 E-11 
0.3 0.34985880757600310398 0.34985880793383639184 3.57833 E-10 
0.4 0.49182469764127031782 0.49182469835665867039 7.15388 E-10 
0.5 0.64872127070012814684 0.64872127197271171632 1.27258 E-09 
0.6 0.82211880039050897487 0.82211880239117632891 2.00066 E-09 
0.7 1.01375270747047652162 1.01375271047371182210 3.00323 E-09 
0.8 1.22554092849246760457 1.22554093274086051460 4.24839 E-09 
0.9 1.45960311115694966380 1.45960311702318349860 5.86623 E-09 
1 1.71828182845904523536 1.71828183628078357650 7.82173 E-09 

 

IV. Conclusion 

In this study, an implicit block-hybrid method 

for solving ODE of second order was proposed. 

The consistency, convergence, and zero-stability 

of the method were studied and the newly 

developed scheme offers an opportunity to 

record an accurate approximate solution at 

acceptable sites when applied to the class of 

problem solved. It was seen from the presented 

tables generated with the algorithm coded with 

Maple 18 software that the method produced a 

better approximation when compared with the 

exact solution as the error converges to digits 

near zero. 
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