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Development of an Order (k+3) Block-Hybrid Linear Multistep Method for
the Direct Solution of General Second Order Initial Value Problems

Muritala, F., Kolawole, M.K., Oyedeji A.A., Lawal, J.O., Alaje A.I

Abstract: Block hybrid linear multistep method was proposed to overcome the Dahl Quist order
barrier for linear multistep methods. This research aims to answer questions relating to the
convergence, accuracy, and effectiveness of the block hybrid method when utilized to obtain the
solution of Initial Value Problems (IVPs). In this research, an order (k+3) block hybrid method
applicable to obtain the direct solution of IVP’s of ordinary differential equations (ODEs) is
presented. Collocation and interpolation of power series at finely selected grid points were used to
improve the method's consistency, convergence, accuracy and zero stability. Linear problems were
solved to show the accuracy and efficiency of the proposed method, and the error obtained from the
comparison of exact and approximate results shows that the proposed method is effective in solving
the class of problem.

Keywords: Block-Hybrid, Collocation, LMM, Power series, Second Order IVPs.

I. Introduction in sciences, real-life, control theory, and

In this engineering are modelled into Differential

approximate solution of general second-order
initial value problems (IVPs) ofthe form

research work, we consider an
Equations. This is why the numerical solution

of (1) is of great interest to researchers such as
. . [2].

y(x) = f[x, y(x), y(x)] Since only few of these problems can be solved
subject to @® analytically, there is need to study numerical
methods capable of handling the problems

Y(%) = Yo, ¥(Xo) = Yo such as the one applied by [3].

[ 7s continuously differentiable on the given
[a,b].

equation is an equation which has all its

interval An ordinary differential
dependent variables and its derivatives as a
function of its independent wvariable [1].
Equation (1) has a wide range of applications
because many problems that are encountered
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Conventionally, equation (1) is reducible to a
tirst-order ODE and appropriate numerical
methods such as the Euler method can be used
to solve the resultant system [4]. The reduction
process and the setbacks of this approach have
been discussed by numerous authors among
them is [5]. To speed up computation, achieve
better accuracy, reduce computational time
and eliminate overlapping of solution model,
Block methods for
numerical solution of equation (1) have been

approximating the

vastly explored in literature [6]. According to
[7] and [8], block-hybrid methods were first
presented to overcome zero stability barriers
that happened in block methods indicated in
[9], while hybrid methods were first introduced
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that
occurred in block methods mentioned in [§].

to overcome zero stability barriers
The method of interpolation and collocation
of the power series approximation to generate
a continuous Linear Multi-Step Method
(LMM) has been adopted by many scholars
[10]. For the direct solution of second-order
ordinary differential equation, a single-step
hybrid-block technique of order five was
developed by researcher such as [11]. In this
research, a block hybrid approach of order
(k+3) suitable for direct computation of the
solution of second-order IVP’s was developed.
The developed scheme was extended to two
presented problems and the convergence of
the approximate solution to the exact solution
shows that the method is elegant.

II. Materials and Methods
A. Derivation of the Method

As an approximate solution of equation (1), we
assumed a power series of a single variable.

r+s—1

y(x) = Zajxj 2)

Computing «a;, j =0(1)6 in equation (6) above
using the method of matrix inversion and then
substituting into the proposed formulae from

equation (2) gives the continuous formulae
expressed as follows.

17

Where a jare the real unknown parameters to be

determined and I +Sis the sum of the number
of interpolation and number of collocation
points? The first and second derivatives of (2) are
given as;

r+s—1

y(x) = > jax!? 3)

r+s—1

V(x) = > i(i-Dax (4)

The comparison of (4) and (1) gives rise to

r+s-1

FOGy.y) = D (i —Da,x? (5)

=2

Equation (2) is collocated atX,,; for =0,%

and (5 is as well collocated at
. 1 .11 L .
Xoijs ]=0,—1-—,2.. This gives rise to a
10 10
system of nonlinear equations
AX =Db (6)

Where the value of A is given below

1 X, x2 x3 4 X3 x$ _ ;
— - 2 3 4 5 6 yn
a 1 x, +£ (xn +£j (xn +£j (xn +—) (xn +£j (xn +£) Yo
a, 10 10 10 10 10 10 To
0 0 2 6X, 12x? 20x} 30x; f
% h h\? hy? hY* f,.
A=la, |, x=|0 0 2 6(xn +—J 12(xn +—j ZO(Xn +—j 3O(xn +7J and b=| —" | (6)
a 10 10 10 10 10
5 0 0 2 6(x, +h)  12(x,+h)?  12(x, +h)°  12(x, +h)* ffm
as 2 3 4 n+11
a 0 0 2 6(xn + &j 12[x,1 + &) ZO(XH + &j SO[XI1 + %j 10
L& 10 10 10 10 i
0 0 2 6(x, +2h)  12(x,+2h)®>  20(x, +2h)®  30(x, +2h)* | -

j=

y(x) = {Za i)Y, + hz[Zﬂ i)+ 8,00 fn+v)]} 0

Where the approximate solution of the IVP is
denoted by y(x), &; and f3; are the coefficients that
are continuously differentiable. Since (7) is
continuous and differentiable, then ayand f,
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are not both zero. The block method is presented
as a single r-point multistep method of the form;

ym = [Ynﬂl yn+2""yn+r]T + ym—l = [yn—ll YH—Z"“yn—r]T
l:m = [fn+17 fn+2""' fnJrk]T’ym—l = [fn—l’ fn—Z""fn—k]T

The obtained coefficients of y, ;and f ;, are

©)

substituted into the continuous scheme in

equation (7) and are in turn evaluated using non-

interpolating

Xn,Xn 1 ,Xn+l,Xn 11y X,,, yields the following
+— +=

10 10

points that are

derivative scheme presented in equation (9) to

(11);

105477 .\, 30671 . .
440000 " 60000 "*
3167 62281
= +"—""_f h? f . h? 9
e =\ T760000 ™2 " 114000 nk ®)
9183 )
-— h® -9y, +10y
22000 i nes
34139 fnhz+117997 (e
120000 180000
y o=l + 34837 e 54461f e 1)
nes 6840000 85500 n+-:
521
1% fmﬂhz ~10y, +1y
10 10
561431, . 67013 )
660000 " 540000 "*
11237 15097
Y p={ +——f  h+———f b’ (1)
ness 180000 9000
26353 ——=f ,h*-19y +20y ,
99000 ”*B ”*E

The first derivative is obtained by differentiating
the continuous scheme in equation (7) with
respect to x and the results are evaluated at all

interpolation and collocation points X, X

10

18

and X”’Xn i’X"+1’Xn+L1’X”+2- respectively which
10 10
give rise to equations (12-16);

41431 . , 1039
- f.h" + f..h
1320000 540000
th = —+ ﬂ ) 2 19471 (12)
20520000 1026000 M,
941
_ % ¢ h?Po10y, +10
504000 n' YL
1471, 1009
1320000 ™" 540000 ™"
T 18 ., o3 )
el T\ 7 6840000 256500 n+—
18 ¢ ho1oy +10y B
12375 nll

591431 ., 761039
“1320000 " *sa0000 "
[, 63503 . . 930529 . (14)

hZn+l - n+2 +
6840000 1026000 n+f
183647 4 ,h?-10y, +10y
198000 n+ ;5
196843 ) 262997
f.he+ f,..h
440000 180000
hz 11 = ]Bgi fn+2h2 77461 (15)
o 20520000 85500 n+f
—65261f ,h?-10y, +10y E
74250 n+ﬁ
36407 . 292087 ,
40000 " 180000 "*
hz, ., = +M f ,h? +LZ6843 f ,h? ) (16)
20520000 342000 -+,
145369

———{ ,,h*-10y, +10
54000 AR

n+—
10 10

And the proposed Block-Hybrid method is
given as:
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- s
B 24 108 4104
n+l

290 , 10 5 @7
N ==1f ,h"+y +z,h
513 ”*E 27 ME
ggf h? + @ fmlh2
32 2 880 2
yn+2 = an fn+2h —f lh (18)
513 513 n+s
0 —f ,h*+y +2z,h
297 n+ 5

941

11

+7
5940000 i 10

41431 ., 1039 )
fh?— f ,h

~ 13200000 5400000

509 ., 10471 )
205200000 ™ 10260000 nk

(19)

1
10

z,h+y,

205200000
249139 h? 11

11

+ J—
540000 20 10

10

Ot By

1
12 n 27 n+1h +m fn+2h

(21)
— n+£h +z

A n+lh
+—f h+@f . h (22)
513 "+E
+—f h+z
297 neig "

30451 fh 64

299959 fnh2+3528481 -
~ 1200000 5400000
y - 1039511 fn+2h2+6749501 ¢ 20)

10260000 n+

10

z,h+y,.

f

- h
660000 " 16875 "

499

e 10260000 "*
1853

+ 11

594000 n+i

10

+ 1
1026000 n+

+Z

56003

(23)

n

19

24959 49247
- fn h+ n+l
60000 33750

;o . 94501 . . 949003 .\
. 10260000 1026000 n+L

10

47377
— wh+z,
54000 n+=

10

B. The Block's Analysis
i. The Block’s Order and Error Constant

Let ¢ be a linear difference operator on the
method defined as:

k-1
Iy0;n]=> e, y(x + ih) —=h? B,y (x + ih)]
i—0
Where Y(X)is a continuously differentiable
function on the interval[er, ] Expanding (22)
using Taylot’s series about y(x) and collecting the
coefficients of power of h yields;
CoY(X) +Cih y(x)

Ayx);hl={ +ch? y(x)(x) +---+ ) (25)
c hfy?(x) +0(h*?)

whose coefficients C, V g=0212,--- defined
as:

Kk
Co :Z[ai =, +a, +a, +---+ak] (26)
i—0

k(i Li—=(a, +2a, +3a; + -
;ﬂ:"‘ kKa) = (Bo + P+ B+ + B ):|} @)
K i2

C> = 2 : >1 <~; — i§:o:/6i

i—=0

Such that

c, - %(a1+22a2+32a3+---+k2ak) (28)
_(ﬁo +20, +3p, +"'+k18k)

T 1 oo
:g{q!'“‘_(q—z)!' ﬂ‘} (29
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%(051+2°‘a2 +3%x, + ke,

1 - -
C = —qe B2 A3 5

bt k@

(30)

Thus the block schemes are of order p if
C,=C,=C,=---=C,,=0 and C,,, is not
equal to zero, therefore C,,,called the error
constant. Thus, the error due to truncation at the
local level isT,,, = Cp+2hp+2yp+2(X)+0(h P9
The order of the block is p=5 and the error

constants obtained by comparing coefficients of
h is:

e — 144601 262823 1233803 |
pr2 800000000 ' 1200000000 ' 1200000000

ii. Consistency
A linear Multistep Method (LMM) is said to be
consistent if order P=1 and the following
axioms are satisfied;

[
i. _:EO ai — O

i p@=p@=0

. p=2c(r)=0

K _ K _
Where p(r) = Zajl’J and o(r) = Zﬂjl" are
i—0 i—0

the characteristics polynomial of the first and
second order of the proposed method
respectively. Making reference to [12], an
associated block method is consistent if p =1,
since the proposed method is of order p=5, it is
concluded that the method is consistent.

iii.  Zero Stability
Koo Koo

Let A%y =Ya'y, + hz[z,ﬁ' fm_ij (26)
i1 i=0

Be a single block r-point multistep technique.
Applying the block in equation (21) we have;

20

det|Q1 — A® |

Q 0 0 0] o o o0 -1
0o Q o0 o] |00 0 -1
“lo 0o @ o|7lo o o —17°
0 0 0 | |00 o0 -1

O3 (€2 —1) =0 —> 2, = 0O,
DO, =0,0, =0, O, =1.

Since there exist no roots greater than |Q| =1this

implies the zero-stability of the derived Block
Hybrid Method.

iv.  Convergence

Fatunla (1973) stated that consistency and zero
stability are the necessary and sufficient
conditions required for the linear multistep
method (LMM) to be convergent.

C. Implementation of the Method

The performance of the method is tested on
some linear real-life problems and a system of
equations of second-order initial value problems.
The results obtained were compared with the
exact solution to determine the absolute errors.

i. Application

In this section, the potency and the accuracy of
the proposed numerical scheme are validated by
applying the method to solve different problems
resulting from areas of application. The obtained

solution 1s compared with the exact solution to
know the absolute error.

ii. Cooling Problem

The ODE governing the reduction in
temperature Y(X) of a body placed in a certain
room after some period Xis given as

BV(X) + y(x) — O.

Subject to the conditions

y(0) = 60, y(6log, 4) = 35
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The exact solution to the problem is
80 -:x 100
X)=—e 3 +——
y(x) = 3 3
The governing ODE is restructured to suit the
computation of the proposed scheme such that
y(X)
3

MOEE

Subject to y(0) = 60, y'(0) = %

h=0.1 Is chosen as step size and the results

obtained at various points of h are presented on
tablel.

iii. Slightly Stiff linear problem

y(x) = y(x),
With the initial condition

y(0)=0, y'=—1,h=0.1 28)
The exact solution is

vy(x) =1—e™

The obtained results at various points of h are
similarly presented in Table 2.

iv. Maple 18 Algorithm for problem 1
The

generating the approximate results of problem 1

following algorithm is applicable in

presented in Table 1.

Digits: = 30: N: = 10: h := 1/N: x [0] := 0: y [0]
:= 60: z [0] := -80/9:

A = yln+1] = -
(5/24)*f[n]*h"2+(55/108)*f[n+1]*h"2+(17/41
04)*f[n+2]*h"2+(290/513)*f[n+1/10]*h"2-
(10/27)*f[n+11/10]*h"2+y[n]+z[n]*h, y[n+2]

(26/33)*f[n]*h"2+(20/27)*f[n+1]*h"2+(32/51
3)*f[n+2*h"2+(880/513)*f[n+1/10]*h"2+(80
/297)*f[n+11/107*h"2+y[n] +2%2[n] *h,
yln+1/10] = (41431/13200000)*f[n]*h"2-
(1039/5400000)*f[n+1]*h"2-
(509,/205200000)%f[n+2]*h"2+(19471/1026000
0)*f[n+1/10]*h"2+(941/5940000)*f[n+11/10]*

21

W2+ (1/10) 2ol *h+y[a], ya+11/10] = -
(299959/1200000)*f[n]*h"2+ (3528481 /540000
0)*f[n+1]*h"2+(1039511/205200000)*f[n+2]*h
~2+(6749501/10260000)*f[n+1/10]*h"2-
(249139/540000)*f[n+11/10]*h’\2+y[ ]+(11/1
0)*2[n]*h ln+1] = :
(5/12)*h*f[n]+(38/27)*h*f[n-+1]+(1 /108 ¥h*f]
2]+ (25/27) 0 [n+1/10]-
(25/27)*h*f[n+11/10]+2[a],
(29/33)*h*f[n]-
(44 /270 fln+1]+(131/513)*h*£[n+2]+(800/5
13)*h*f[n+1/10]+(800/297)*h*f[n+11/10]+z2[
n], z[n+1/10] = (30451/660000)*h*f[n]-
(64/16875)*h*f[n+1]-
(499/10260000)*h*f[n+2]+(56003/1026000)*h
“fn+1/10]+(1853/594000)h*fln+11/10]+2[n 1]
Z[n+11/10] =
(24959/60000)*h*f[ ]+(49247/33750)*h*f[n+1
]+(94501/10260000)*h*f[n+2]+(949003/10260
00)*h*f[n+1/10]-
(47377/54000)*h*f[n+11/10]+2[a):
for n from 0 by 2 to N do f[n] := -(1/3)*z[n];
fla+1/10] := -(1/3)*2[n+1/10]; fln+10%(1/10)]
= (1/3)%2[n+10%(1/10)); fn+11/10] := -
(1/3)%2[n+11/10]; fln+2] := -(1/3)*2[n+2]; P :=

z[n+2] = -

fsolve({A}); Q := eval(y[n+1], y[n+2],
y[n+1/10],  y[a+11/10],  z[n+1],  z[n+2],
z[n+1/10], z[n+11/10]], P); y[n+1] := Q[1];
v[n+2] = Q[2J; y[n+1/10] := Q[3]; y[n+11/10]
= QM5 #nt1] = QS 7nt2] = Q[6);
2[n+1/10] := Q[7]; z[a+11/10] := Q[8] end do:

> for j from 0 to N do y[j] := evalf[20](y[j]) end
do;

v.  Maple 18 Algorithm for Problem 2.

Similarly, the results of problem 2 presented in
Table 2 is
algorithm.

obtained using the following

> Digits: = 30: N: = 10: h := 1/N: x[0] := 0: y[0]
=0 z[0] = -1: A = yntl] = -
(5/24)*f[n]*h"2+(55/108)*f[n+1]*h"2+(17/41
04)*f[n+2]*h"2+(290/513)*f[n+1/10]*h"2-
(10/27)*f[n+11/10]*h"2+y[n]+z[n]*h, y[n+2]

(_26/33)*f[n]*hA2+(20/27)*f[n+1]*hA2+(32/51
3)*f[n+2]*h"2+(880/513)*f[n+1/10]*h"2+(80
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/297)*f[n+11/10*h"2+y[n]+2*z[n]*h,
yln+1/10] = (41431/13200000)*f[n]*h"2-
(1039/5400000)*f[n+1]*h"2-
(509/205200000)*f[n+2]*h"2+(19471/1026000
0)*f[n+1/10]*h"2+(941/5940000)*f[n+11/10]*
W 2+(1/10)%z[n]*h+y[n], yn+11/10] = -
(299959/1200000)*f[n]*h"2+(3528481 /540000
0)*f[n+1]*h"2+(1039511/205200000)*f[n+2]*h
~2+(6749501/10260000)*f[n+1/10]*h"2-
(249139/540000)*f[n+11/10]*h"2+y[n]+(11/1
0)*z[n]*h, z[n+1] = -
(5/12)*h*f[n]+(38/27)*h*f[n+1]+(1/108)*h*f]
n+2]+(25/27)*h*f[n+1/10]-
(25/27)*h*f[n+11/10]+2[n], z[n+2] = -
(29/33)*h*f[n]-
(44/27)*h*f[n+1]+(131/513)*h*f[n+2]+(800/5
13)*h*f[n+1/10]+(800/297)*h*f[n+11/10]+2[
n], z[n+1/10] = (30451/660000)*h*f[n]-
(64/16875)*h*f[n+1]-
(499/10260000)*h*f[n+2]+(56003/1026000)*h
*fln+1/10]+(1853/594000)*h*f[n+11/10]+2[n]
, 2[n+11/10] = -
(24959/60000)*h*f[n] + (49247 /33750)*h*f[n+1
1+(94501/10260000)*h*f[n+2]+ (949003 /10260
00)*h*f[n+1/10]-
(47377/54000)*h*f[n+11/10]+z[n]:

for n from 0 by 2 to N do f[n] := z[n]; fln+1/10]
= z[n+1/10]; fln+10%(1/10)] =
z[n+10%(1/10)]; fln+11/10] := z[n+11/10];

22

fln+2] := z[n+2]; P := fsolve({A}); Q =
eval([y[nt1], y[n+2], y[n+1/10], y[n+11/10],
2n+1], z[n+2], z[n+1/10], z[n+11/10]], P);
yln+1] := Q[1]; y[n+2] := Q[2]; y[n+1/10] :=
Q[3]; yln+11/10] := Q[4]; z[nt+1] = Q[5];
z[n+2] := Q[6]; z[n+1/10] := Q[7]; z[n+11/10]
:= QJ8] end do;

> for j from 0 to N do y[j] := evalf[20](y[j]) end
do;

II1. Results and Discussion

The results obtained from the proposed method
with step number two and accuracy order five
were compared with the exact solution and other
methods. The accuracy of the developed method
was examined using two different problems and
their corresponding results are discussed below

In Table 1, the absolute error signifies that the
approximate solution accelerates and converges
to the exact solution with minimal error.

It was observed from table 2 that the greatest
error recorded from the proposed method is
7.76587 E-11 which shows that the accuracy of
the proposed method is to a great extent.

Table 1: Numerical Results of Problem 1

X Exact Results Computed Results Absolute Error
0 60 60 0

0.1 59.125762679520157388 59.125762679519946596 2.1079E-13
0.2 58.280186267509806339 58.280186267508610635 1.1957E-12
0.3 57.462331147625588618 57.462331147622161666 3.4269E-12
0.4 56.671288507811932107 56.671288507805616398 6.3157E-12
0.5 55.906179330416375308 55.906179330406069385 1.0305E-11
0.6 55.166153415412849564 55.166153415398000705 1.4848E-11
0.7 54.450388435647511050 54.450388435627149172 2.0361E-11
0.8 53.758089023057298472 53.758089023030964860 2.6333E-11
0.9 53.088485884845809762 53.088485884812653343 3.3156E-11
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Table 2: Numerical Results of Problem 2

23

X Exact Results Computed Results Absolute Error
0.1 0.10517091807564762481 0.10517091809570308609 1.57030 E-11
0.2 0.22140275816016983392 0.22140275827765879433 7.76587 E-11
0.3 0.34985880757600310398 0.34985880793383639184 3.57833 E-10
0.4 0.49182469764127031782 0.49182469835665867039 7.15388 E-10
0.5 0.64872127070012814684 0.64872127197271171632 1.27258 E-09
0.6 0.82211880039050897487 0.82211880239117632891 2.00066 E-09
0.7 1.01375270747047652162 1.01375271047371182210 3.00323 E-09
0.8 1.22554092849246760457 1.22554093274086051460 4.24839 E-09
0.9 1.45960311115694966380 1.45960311702318349860 5.86623 E-09
1 1.71828182845904523536 1.71828183628078357650 7.82173 E-09

IV. Conclusion

In this study, an implicit block-hybrid method
for solving ODE of second order was proposed.
The consistency, convergence, and zero-stability
of the method were studied and the newly
developed scheme offers an opportunity to
record an accurate approximate solution at
acceptable sites when applied to the class of
problem solved. It was seen from the presented
tables generated with the algorithm coded with
Maple 18 software that the method produced a
better approximation when compared with the
exact solution as the error converges to digits
near zero.
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