

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

UNIOSUN Journal of Engineering and Environmental Sciences. Vol. 4 No. 1. Sept. 2022

Comparative Analysis and Performance Evaluation of Contiguous Memory

Techniques

Adeleke, I.A.

Abstract: Memory is a resource that must be carefully managed in computing systems due to its
importance in job executions and in saving information. This paper is based on the techniques that
operating systems use to manage memory allocation through simulation in allocating processes and
data to partitioned memory. The physical memory of the computer system was modeled and
simulation was performed under four contiguous allocation techniques namely; First-fit, Next-fit,
Best-fit and Worst-fit with different percentages of free memory availability. Jobs and processes are
assigned to the memory of a computer system that contained 512 kilobytes (KB) as memory capacity.
Each of these techniques was tested and the result obtained revealed the capacity of memory wastage
by each of them. This showed that the four tested algorithms do not optimize the storage
concurrently. Thus, it was discovered that at 10% memory free, only the worst-fit algorithm had the
highest memory wastage which is 120 KB while the other three techniques had the same memory
wastage of 115 KB. The result repeated itself at 50% memory free in that worst-fit had 296 KB as
the highest memory wastage. Therefore, out of the techniques considered, it was noticed that the
worst-fit wasted the highest memory with a total of 1047 KB while the best-fit had the lowest
memory wastage with a total of 1000 KB.

Keywords: Allocation, best-fit, contiguous, memory, processes, worst-fit

I. Introduction

Computer memory is expected to be kept in

proper utilization for the users to adequately

enjoy its usage just as human memory should be

well managed for proper coordination. The

efficiency of several memory units has been

identified as fundamental element for improving

the performance and scope of the application of

computer technologies [1]. This computer

memory is under the control of software written

by the computer manufacturers to stand as an

intermediary between the user and the system

which is recognized as an operating system. The

operating system manages the memory by

allocating processes to it and recovers it when

execution is terminated as one of its major

responsibilities to avoid memory wastage. Thus,

memory management technique is a technique

that the operating system uses to allocate

processes to the memory by assigning them to a

specific memory location for their execution and

recovery of the memory when the process's

execution terminates or any other condition

causes the process to free the memory. [2]

Expressed memory management as all methods

used in memory to store code and data, track use,

and, where possible, retrieve memory space. [3]

Equally opined that memory management is the

task carried out by the Operating System (OS)

and hardware to accommodate multiple

processes in main memory. This has proved the

significance of managing computer memory for

the effective functionality of a computer set if

our system will not be battling with frequent

series of interruptions, hanging and wastage of

resources.

Adeleke, I.A (Department of Computer Science, Emmanuel

Alayande College of Education, Oyo State, Nigeria)

Corresponding author: adeleke_israel@yahoo.com

Phone Number: +234-706-222-9188

Submitted: 21-01-2022

Accepted:06-06-2022

DOI: 10.36108/ujees/2202.40.0270

mailto:adeleke_israel@yahoo.com

62

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

In the recent era of computing, applications of

an operating system cannot survive without

efficient memory management, especially if an

application has to be under review load for an

undefined long time. Resources must be utilized

efficiently to enhance performance [4]. Memory

management offers different processes and

threads for the allocation of memory and

deallocation techniques [5]. The module for

memory management performs memory

allocation and deallocation for the program [6].

The operating system does different storage

management tasks, it tracks the storage media of

which memory part is being used and which

memory part is not being used [7]. At the time of

the process memory request, the operating

system helps to allocate the memory [8]. If the

process no longer requires memory, the memory

will be deallocated [9]. The task of memory

allocation is done with the help of the operating

system in multi-programming [10]. OS offers

two common memory allocation methods which

are static and dynamic. In static memory

management, OS assigns memory to a system

that cannot be modified over time [11]. Static

allocation cannot forecast the amount of

memory needed, particularly in real-time

scenarios [12]. Dynamic management

technology, however, offers flexibility in memory

acquisition in runtime [13].

Meanwhile, during job performance, the

bottleneck of a computer system is seriously

affected [14]. Consequently, it is apparent from

the work of computer scientists that effective

and efficient main memory management and

virtual memory management in computer

systems will undoubtedly improve the computer

system’s performance by increasing throughput

and processor utilization, decreasing the

response time and turnaround time [15]. Since

main memory is a part of the main components

for recent computer systems, with a wider

memory capability for various applications for

handling increasingly explosive data [16]. It is

part of the computer which stores data and is an

important resource of the computer which

should be managed carefully by the memory

manager. The speed of a computer system

depends on the way of managing different types

of memory in the computer system. Unlike data

on a hard disk, the data that lives in the memory

cannot be saved and will be lost when the

application quits or the computer is powered off.

Also, if only a few processes can be kept in the

main memory, then much of the time all

processes will be waiting for I/O and the CPU

will be idle. Hence, memory needs to be allocated

efficiently in order to pack as many processes

into memory as possible. The OS manages

memory by allocating available memory to

different processes and applications so that

running applications have enough memory to

perform their functions. This memory must be

fairly allocated for high processor utilization and

systematic flow of information between main

and secondary memory.

Therefore, in order to maximally utilize the

computer memory, memory partition is highly

imperative. Memory partition is the system by

which the memory of a computer system is

divided into sections for use by the resident

programs which may be fixed, variable or

dynamic partitioning. Fixed partitioning is the

system of dividing memory into non-overlapping

(static) sizes in which the partition of memory

apportioned to an active process is unalterable

during the period of existence of a process. In

general, static memory allocation is the allocation

of memory at compile time, before the associated

program is executed, unlike dynamic memory

allocation or automatic memory allocation where

memory is allocated as required at run time [17].

https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Dynamic_memory_allocation
https://en.wikipedia.org/wiki/Dynamic_memory_allocation
https://en.wikipedia.org/wiki/Automatic_memory_allocation
https://en.wikipedia.org/wiki/Run_time_%28program_lifecycle_phase%29

63

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

This is one of the simplest methods for allocating

memory which is to divide memory into several

fixed-sized partitions. This static memory

allocation categorizes into fixed equal-size

partitions in which the main memory is divided

into equal number of fixed sized partitions and

operating system occupies some fixed portion

and remaining portion of main memory is

available for user’s processes. Any process whose

size is less than or equal to the partition size can

be loaded into any available partition. It supports

multiprogramming. Variable partitioning is the

system of dividing memory into non-overlapping

(unmovable/static) but variable sizes. This

system of partitioning is more flexible than the

fixed partitioning configuration, but it is still not

the most ideal solution. Small processes fit into

small partitions and large processes fit into larger

partitions [18]. Fixed variable size partitions

overcome the disadvantage present in fixed equal

size partitioning in that if a program is too big to

fit into a partition of fixed equal size partition is

a serious issue.The Fixed Partitioning approach

has a severe loss of memory utilization for

processes that exhibit a wide variance of locality

size [19]. Dynamic memory allocation is a

memory management technique in which a

program can request and return memory while it

is executing [20]. It is discovered as the best

suited for workloads that have regular and

predictable fluctuations in memory demands

which can be achieved using certain functions

like malloc(), calloc(), realloc(), free in C and

"new", "delete" in C++to get memory

dynamically. In dynamic Memory allocation,

memory is allocated during run-time in heap and

this is used when the size of memory is variable

and is known only during run-time.

II. Materials and Methods

In order to achieve the setup goal, the physical

memory is simulated and implemented by using

bit-map approach in which the memory was

divided into a small cell that could hold only one

bit of data. This is done as large as several

kilobytes, corresponding to each allocation unit

is a bit in the bit-map which is zero (0) if the unit

is free and one (1) if it is used. This was

implemented by using array data structure in

which each array entry can hold only one bit of

data. Then, the input queue of processes was

defined by using an array of processes where

each entry determined the size of the process.

Also, a memory table was defined which is a

record type, containing information about each

memory space, that indicates if the memory is

free or which process is currently allocated to it

and the duration at which the process has to be

in the memory. The four memory allocation

techniques are simulated and implemented with

their respective algorithms. This was therefore

assigned process of the queue in the memory

space and keeping the track in the memory table.

Finally, both the total memory small spaces not

used by each technique are summed and

compared for different memory availability by

using table and plotting graph in which the

differences are clearly highlighted. This was

implemented by using an object-oriented

language called Delphi 6 programming language

when partitioned memory was examined within

the range of 10% to 50% free memory

availability.

A. Different Types of Contiguous Memory

Allocation Techniques

Having partitioned the memory and the

processes are already on a queue the next thing

for the process is to search for the free block in

64

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

the memory using any fit algorithms but priority

is to be given to the process/job in front of the

queue. There are four types of memory allocation

techniques that are well pronounced namely;

i. Best-fit: It chooses the block, that is closest

in size to the given request from the beginning to

the ending free blocks. This strategy produces

the smallest leftover hole. When a process needs

memory, the operating system will allocate the

smallest memory space that will fulfill the

memory requirement for the process. So, for

example, if there are the following free memory

blocks: 10 KB, 25 KB, 30 KB, 15 KB, 8KB and

20 KB, and a process needs 12 KB to run, it will

be assigned the 15 KB space. This is because

there is no 12 KB space, and the 10KB space will

be too small, but the 25 KB will be too large.

Even though the 15 KB space is a little larger

than what is required by the process, this is the

best space available for the process.

ii. First-fit: It begins to scan memory from the

beginning and chooses the first available block

which is large enough. Searching can start either

at the beginning of the set of blocks or where the

previous first-fit search ended. We can stop

searching as soon as we find a free block that is

large enough.

iii. Worst-fit: Worst-fit memory allocation

allocates free available block to the new job [21].

That is, it allocates the largest block but by

searching the entire list, unless it is sorted by size.

This strategy produces the largest leftover hole

which may be more useful than the smaller

leftover hole from a best-fit approach.

iv. Next-fit: It begins to scan memory from

the location of the last placement and chooses

the next available block. In the figure below the

last allocated block is 18k, thus it starts from this

position and the next block itself can

accommodate this 20K block in place of 36K

free block. It leads to the wastage of 16KB space.

B. Algorithms of How Process/Job is

Assigned

Here are the algorithms that had been utilized to

achieve the total amount of memory wastage

during the execution of the programs. Table 1

represents the initial algorithm which other

algorithms are depending upon.

i. First-fit Approach

In first -fit algorithm, the memory manager scans

along the list of segments until it finds a space

that is big enough. The space is then broken up

into two pieces, one for the process and one for

the unused memory except in the unlikely case of

an exact fit. First fit is a fast algorithm because it

searches as little as possible. The algorithm for

first-fit is as presented in Table 2.

ii. Next-fit Approach

It works the same way as first-fit except that it

keeps track of where it is when it finds a suitable

space. The next time it is called, it starts searching

from where it is left off instead of always at the

beginning as first-fit normally does. The

algorithm that was employed for this is written in

Table 3.

iii. Best-fit approach

Best-fit searches the entire list of the partitioned

memory and takes the smallest space that is

adequate enough. Rather than breaking up a big

space that might be needed later, best fir tries to

find a space that is close to the actual size needed.

The algorithm that does this is written in Table 4

iv. Worst-fit approach

This always takes the largest available space so

that the space broken off will be big enough to

65

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

hold the process or job. Table 5 was presented to

show the algorithm of Worst-fit approach.

Table 1: Initial algorithm

STEP 1 If there still exist job/process in the
queue and there exist free block in the
memory

STEP 2 Then pick the job from the front of queue
that can fit that block and assign it to
the block

STEP 3 If process has completed its execution
STEP 4 Remove it from the memory block
STEP 5 Put it on the set of executed job
STEP 6 Free that memory partition
STEP 7 Go to the incoming queue and start again

Until no more job on the queue

Table 2: First-fit algorithm

STEP 1 If there still exist job in the queue
STEP 2 If there are several free blocks (spaces) in

the memory
STEP 3 Pick the job from the front of the queue
STEP 4 Allocate it to the first space that is big

enough to accommodate it
STEP 5 Return to the beginning of the activity
STEP 6 Repeat the exercise until there is no

more job on the queue
STEP 7 Take note of the memory wasted for the

whole exercise

Table 3: Next-fit Algorithm

STEP 1 If there exist several free space on the
memory

STEP 2 If there are jobs to be allocated into the
memory

STEP 3 Pick job from the set of jobs
STEP 4 Allocate it to any first free space big

enough to accommodate it
STEP 5 Pick another job
STEP 6 Start searching from where you stopped

before
STEP 7 Allocate the job to the next big enough

free space
STEP 8 If there is no free space enough to

accommodate the job

STEP 9 Return to the beginning of the memory
partition

STEP 10 Continue with the searching until you
get free space that can accommodate it

STEP 11 Find the total memory wasted during
allocation exercise

.

Table 4: Best-fit Algorithm

STEP 1 If there still exist job in the queue as well
as free memory space in the memory

STEP 2 Pick a job from the queue and allocate it
to the smallest free hole that is adequate
to accommodate it

STEP 3 Repeat the exercise until there is no more
job on a queue

STEP 4 Terminate the process
STEP 5 Determine the memory wasted all

through

Table 5: Worst-fit Algorithm

STEP 1 If there exist job in the queue and there
exist free memory space

STEP 2 Pick job from the front of the queue
STEP 3 Assign it to the largest free space large

enough to accommodate it
STEP 4 Return to the beginning of the operation

if there are still jobs and free spaces
STEP 5 Terminate the work if there is no more

job
STEP 6 Record the memory wasted to do the job

allocation

III. Result and Discussions

Having modelled the physical memory of a

computer system using fixed equal-size partition

method system and implemented a simulation of

four contiguous memory allocation techniques

(best-fit, next-fit, worst-fit and first-fit) under the

set up range of memory availability, it was

discovered that a lot of the memory is wasted by

all those algorithms although some seem to be

better than others. Therefore, discovering the

66

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

most efficient algorithm among the four memory

allocation techniques has to do with the factor

that has been tried to optimize (memory usage)

which includes; the size of the memory and the

percentage at which the memory is used. Table 6

was presented to show the various percentages

employed for the simulation of the four memory

techniques under consideration with their

respective memory wastage in KB. Therefore,

discovering the most efficient algorithm among

the four memory allocation techniques has to do

with the factor that has been tried to optimize

(memory usage) which includes; the size of the

memory and the percentage at which the

memory is used.

Table 6. Result of the Simulation of the

Physical Memory that was Modeled

FREEMEM 10% 20% 30% 40% 50%

FIRST FIT 115 160 215 225 286

NEXT FIT 115 160 220 251 286

BEST FIT 115 160 210 235 280

WORSTFIT 120 160 225 246 296

Table 6had revealed that at 10% free memory all

the techniques wasted 115 KB memory space

while worst-fit wasted 120 KB memory space. At

20%, the four of them wasted 160 KB memory

space, at 30%, best-fit wasted the smallest

memory (210KB memory), next-fit wasted 220

KB memory, the worst-fit wasted 225 KB

memory which is the highest and first-fit wasted

215 KB memory, at 40%, best-fit wasted 235KB

memory, next-fit wasted 251KB memory, worst-

fit wasted 246 KB memory and first-fit wasted

225 KB memory and at 50% best-fit wasted 280

KB memory, next-fit and first-fit wasted 286 KB

memory each while worst-fit wasted the highest

memory which is 296KB. The summation of the

memory wasted within the range of 10% and

50% memory free among the four contiguous

memory allocation techniques

Percentage of free memory modeled

Figure 1. Graph of the comparative result of four

contiguous memory allocations

had revealed that worst-fit was the highest which

is 1047KB while best-fit had the smallest

memory wasted which is 1000KB. This implied

that the worst-fit algorithm could not efficiently

manage memory space in static variable memory

partition. The obtained result from Table 6 is

represented using both bar chart in Figure 1 and

line graph in Figure 2 for clarity of the memory

size that is been wasted by each of the

algorithms. Figure 1 was used to represent

memory wasted by first-fit, next-fit, best-fit and

worst-fit based on the percentage range under

consideration in which X-axis was used for

percentage range and Y-axis was used for the

amount of memory wasted. From 10% to 50%,

it revealed that best-fit has the smallest memory

wastage. Figure 2 was used to present the overall

amount of memory wasted at a glance. The four

contiguous memory allocation techniques (first-

fit, next-fit, best-fit and worst-fit) under

consideration were used as X-axis while the total

amount of memory wasted by each technique

was shown in Y-axis. This line graph in Figure 2

revealed equally that the best-fit wasted the

lowest amount of memory. Thus, it should be a

0

50

100

150

200

250

300

350

10% 20% 30% 40% 50%

To
ta

l M
e

m
o

ry
 W

as
te

d

Percentage of free memory modeled

FIRST FIT

NEXT FIT

BEST FIT

WORST
FIT

67

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

technique that should be adopted for efficient

memory management.

Figure 2. Graph of the summation of four

contiguous memory allocation techniques

IV. Conclusion

The study had surveyed the memory allocation

system under different free memory availability

where each process/job was allocated with fixed

memory space through modeling system. The

total storage wasted by each memory allocation

technique was observed and recorded. The

system produced a summary of the memory table

by checking which memory block or memory

address each process was assigned and give an

output of the location of the memory address

where the process was assigned. It also

performed the summation of all memory space

that was not used when processes were still on

the queue waiting for free space in the memory

large enough to accommodate them and the

wasted memory size.

References

[1] Dinesh, K., Mandeep, S. and Harpreet, K.

“Memory Management in Operating System”, Journal

of Emerging Technologies and Innovative Research (JETIR),

vol. 6, Issue 4, www.jetir.org (ISSN-2349-5125),

2019, pp. 465-471

[2] Nihad, R.O., Rezgar, H.S., Jihan, A.A.,

Shilan, B.M., Zainab, S.A. and Zryan, N.R.

“Enhancing OS Memory Management Performance:

A Review”, International Journal of Multidisciplinary

Research and Publications (IJMRAP), vol. 3, Issue 12,

2021, pp. 46-51.

[3] McGuire, T. “Memory Management Chapter

9: CS 431 -- Operating Systems by Dr. Tim

McGuire”, Sam Houston State University, 2016.

[4] Durgesh, R. “Memory Management in

Operating System”, International Journal of Trend in

Scientific Research and Development (ijtsrd), ISSN: 2456-

6470, vol. 2, Issue 5, 2018, pp. 2346-2347,

URL:https://www.ijtsrd.com/papers/ijtsrd18342.p

df

[5] Mohammad, O.F., Rahim, M.S.M.,

Zeebaree, S.R.M. and Ahmed, F.Y. “A Survey and

Analysis of the Image Encryption Methods”,

International Journal of Applied Engineering Research, vol.

12, 2017, pp. 13265-13280.

[6] Pupykina, A. and Agosta, G. “Survey of

Memory Management Techniques for HPC and

Cloud Computing”, IEEE Access, vol. 7, 2019, pp.

167351-167373.

[7] Ageed, Z., Mahmood, M.R., Sadeeq, M.,

Abdulrazzaq, M.B. and Dino, H. “Cloud Computing

Resources Impacts on Heavy-load Parallel Processing

Approaches”, IOSR Journal of Computer Engineering

(IOSRJCE), vol. 22, 2020, pp. 30-41.

[8] Abdulla, A.I., Abdulraheem, A.S., Salih,

A.A., Sadeeq, M.A., Ahmed, A.J. and Ferzor, B.M.

“Internet of Things and Smart Home Security”,

Technol. Rep. Kansai Univ, vol. 62, 2020, pp. 2465-2476.

[9] Sallow, A., Zeebaree, S., Zebari, R.,

Mahmood, M., Abdulrazzaq, M. and Sadeeq, M.

“Vaccine Tracker SMS Reminder system: Design and

Implementation”, 2020.

[10] Salih, A.A., Zeebaree, S.R., Abdulraheem,

A.S., Zebari, R.R., Sadeeq, M.A. and Ahmed, O.M.

“Evolution of Mobile Wireless Communication to

5G Revolution” Technology Reports of Kansai University,

vol. 62, 2020 pp. 2139-2151.

970

980

990

1000

1010

1020

1030

1040

1050

1060

To
ta

l M
e

m
o

ry
 W

as
te

d

Memory Allocation Techniques

https://www.ijtsrd.com/papers/ijtsrd18342.pdf
https://www.ijtsrd.com/papers/ijtsrd18342.pdf

68

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

[11] Zeebaree, S.R., Jacksi, K. and Zebari, R.R.

“Impact Analysis of SYN Flood DDoS Attack on

HAProxy and NLB Cluster-based Web Servers”,

Indones. Journal. Of Electronic Engineering and Computer

Science, vol. 19, 2020, pp. 510-517.

[12] Zeebaree, S.R. and Yasin, H.M. “Arduino

Based Remote Controlling for Home: Power Saving,

Security and Protection”, International Journal of

Scientific & Engineering Research, vol. 5, 2014, pp. 266-

272.

[13] Yasin, H.M., Zeebaree, S.R., Sadeeq, M.A.,

Ameen, S.Y., Ibrahim, I.M. and Zebari, R. “IoT and

ICT Based Smart Water Management, Monitoring

and Controlling System: A Review”, Asian Journal of

Research in Computer Science, 2021, pp. 42-56.

[14] Abdulqadir, H.R., Zeebaree, S.R., Shukur,

H.M., Sadeeq, M.M., Salim, B.W. and Salih, A.A. “A

Study of Moving from Cloud Computing to Fog

Computing”, Qubahan Academic Journal, vol. 1, 2021,

pp. 60-70.

[15] Ahmed, F. “A Review of Memory Allocation

and Management in Computer systems”, Computer

Science & Engineering: An International Journal (CSEIJ),

vol.6, no. 4. 2016.

[16] Maulud, D.H., Zeebaree, S.R., Jacksi, K.,

Sadeeq, M.A.M. and Sharif, K.H. “State of Art for

Semantic Analysis of Natural Language Processing”,

Qubahan Academic Journal, vol. 1, 2021, pp. 21-28.

[17] Jack, R. “What is Static Memory Allocation

and Dynamic Memory Allocation?"

http://www.merithub.com/: [An Institute of Career

Development], 2008.

[18] Lyna, G. “What is Memory Partitioning”?

Definition & Concept, 2011.

https://study.com/academy/lesson/what-is-

memory-partitioning-definition-concept.html.

[19] Denning, P.J. and Graham, G.S. “Multi-

Programmed Memory Management”, Proc. IEEE, vol

63, 1975, pp. 924-939.

[20] MeritHub, B. “What is Static Memory

Allocation and Dynamic Memory Allocation? 2011”,

http://www.merithub.com/: [An Institute of Career

Development]. Retrieved. 2018-06-16. Best-Fit,

First-Fit and Worst-Fit Memory Allocation Method

for Fixed Partition.

http://thumbsup2life.blogspot.com.ng/2011/02/be

st-fit-first-fit-and- worst- fit-memory.html

[21] Bays, C. “A Comparison of Next-fit, First-

fit, and Best-fit”. Journal of Communication, ACM, vol.

20, 1977, pp. 191-192. Do:10.1145/359436.359453,

Available at:

https://www.researchgate.net/publication/2204276

61_A_Comparison_of_Next-fit_First-fit_and_Best-

fit [accessed Apr. 22, 2018].

http://thumbsup2life.blogspot.com.ng/2011/02/be

st-fit-first-fit-and-worst-fit-memory.html

https://study.com/academy/lesson/memory-

allocation-schemes-definition-uses.html

https://www.tutorialspoint.com/operating_system/

os_memory_management.htm

http://www.sciencehq.com/computing-

technology/memory-management.html

http://www.merithub.com/q/58-static-memory-allocation-dynamic-memory-allocation.aspx
http://www.merithub.com/q/58-static-memory-allocation-dynamic-memory-allocation.aspx
http://www.merithub.com/
https://study.com/academy/lesson/what-is-memory-partitioning-definition-concept.html
https://study.com/academy/lesson/what-is-memory-partitioning-definition-concept.html
http://www.merithub.com/q/58-static-memory-allocation-dynamic-memory-allocation.aspx
http://www.merithub.com/q/58-static-memory-allocation-dynamic-memory-allocation.aspx
http://www.merithub.com/
file:///C:/Users/USER/Desktop/UJEES%20VOL.4,NO.2/UJEES%20VOL.4,NO.2/Corrections%20byTobi/Best-Fit,%20First-Fit%20and%20Worst-Fit%20Memory%20Allocation%20Method%20for%20Fixed%20%20%20%0d%20%20%20%20%20%20%20%20%20%20Partition
file:///C:/Users/USER/Desktop/UJEES%20VOL.4,NO.2/UJEES%20VOL.4,NO.2/Corrections%20byTobi/Best-Fit,%20First-Fit%20and%20Worst-Fit%20Memory%20Allocation%20Method%20for%20Fixed%20%20%20%0d%20%20%20%20%20%20%20%20%20%20Partition
file:///C:/Users/USER/Desktop/UJEES%20VOL.4,NO.2/UJEES%20VOL.4,NO.2/Corrections%20byTobi/Best-Fit,%20First-Fit%20and%20Worst-Fit%20Memory%20Allocation%20Method%20for%20Fixed%20%20%20%0d%20%20%20%20%20%20%20%20%20%20Partition
http://thumbsup2life.blogspot.com.ng/2011/02/best-fit-first-fit-and-%20worst-%20fit-memory.html
http://thumbsup2life.blogspot.com.ng/2011/02/best-fit-first-fit-and-%20worst-%20fit-memory.html
https://www.researchgate.net/publication/220427661_A_Comparison_of_Next-fit_First-fit_and_Best-fit
https://www.researchgate.net/publication/220427661_A_Comparison_of_Next-fit_First-fit_and_Best-fit
https://www.researchgate.net/publication/220427661_A_Comparison_of_Next-fit_First-fit_and_Best-fit
http://thumbsup2life.blogspot.com.ng/2011/02/best-fit-first-fit-and-worst-fit-memory.html
http://thumbsup2life.blogspot.com.ng/2011/02/best-fit-first-fit-and-worst-fit-memory.html
https://study.com/academy/lesson/memory-allocation-schemes-definition-uses.html
https://study.com/academy/lesson/memory-allocation-schemes-definition-uses.html
https://www.tutorialspoint.com/operating_system/os_memory_management.htm
https://www.tutorialspoint.com/operating_system/os_memory_management.htm
http://www.sciencehq.com/computing-technology/memory-management.html
http://www.sciencehq.com/computing-technology/memory-management.html

