

UNIOSUN Journal of Engineering and Environmental Sciences. Vol. 5 No. 1. March. 2023

A Review of Methods for Diagnosing Incipient Faults in Power Transformers using Dissolved Gas Analysis

Alawode, K. O. and Olowolafe, F.

Abstract: Power transformers play an important role in ensuring efficient and reliable transmission and distribution of electrical power. Their failure can lead to significant disruptions in power supply and safety concerns. Transformer incipient faults may occur due to various reasons, including electrical, mechanical or environmental factors. They develop slowly and can lead to serious damage if not diagnosed and corrected in time. In this review, various techniques for diagnosing this category of faults are highlighted before focusing on Dissolved Gas Analysis (DGA). Discussion on DGA centres on the traditional methods for fault diagnosis as well as various stand-alone and hybrid artificial intelligence techniques developed to improve the fault diagnostic ability of the traditional methods.

Keywords: Dissolved Gas Analysis, Power Transformer, Incipient Faults, Gas ratio methods, Artificial Intelligence methods

I. Introduction

Power transformers are crucial components of the electric power grid that are responsible for the efficient and reliable transmission and distribution of electrical power. They are used to step-up or step-down the voltage of electricity, depending on the requirements of the system. This is necessary because different parts of the grid operate at different voltage levels, and the voltage needs to be stepped up or down as required to ensure efficient and reliable operation. By stepping up the voltage of transmission, electricity before transformers reduce the amount of energy lost due to resistance in the transmission lines, thereby improving energy efficiency in the grid.

Power transformers are often connected to

Alawode, K. O. and Olowolafe, F. (Department of Electrical and Electronic Engineering, Osun State University, Osogbo, Nigeria)

Corresponding author: alawodekehinde@uniosun.edu.ng Phone Number: +234-8074079605

standby generators or battery systems that can supply power to critical loads in the event of a power failure. With increasing prevalence of wind and solar energy sources in the grid, power transformers are needed to integrate renewable sources into the system. They are used to stepup the voltage of electricity generated by these sources to match the voltage levels of the grid, and to regulate the flow of power through the system.

Power transformers are central to effective and reliable power system operation and their failure can lead to significant disruptions and safety concerns. Transformer failure may be described as the loss of its ability to operate in normal condition and this can occur due to various reasons, including electrical, mechanical, or environmental factors. Some of the common transformer failure causes of include overloading, short circuits, insulation failure and overvoltage. Mechanical faults can occur when the cooling mechanism such as fans fail to operate properly. Exposure of transformers to

extreme environmental factors such as temperature, moisture and chemicals can also cause corrosion, rusting, and other forms of damage.

Transformer internal faults can be classified into short circuit faults and incipient faults. Internal short circuit faults are sudden faults which occur when turns of transformer windings get in contact with one another or in contact with earth, and so, they require fast action by protective devices to disconnect the transformer from the electric system. Incipient faults, on the other hand, develop slowly and can lead to serious damage if not diagnosed and corrected in time [1]. They often involve a gradual deterioration of winding or core insulation, overheating, overloading or oil contamination, and their presence cannot be detected by using fuses or relays. Timely detection and correction of these faults in a transformer is important to prevent more serious damage and to ensure safe and efficient operation of the power system.

In this study, a review of different techniques for transformer incipient fault diagnosis is carried out, with emphasis on Dissolved Gas Analysis (DGA) technique, followed by a discussion of various traditional and artificial intelligence methods used for DGA interpretation and fault diagnosis.

II. Techniques for Incipient Fault Diagnosis

There are various techniques for diagnosing incipient faults in power transformers. These include infrared thermography, frequency response analysis, insulation resistance testing, partial discharge analysis, power factor testing and dissolved gas analysis.

A. Infrared Thermography

This which Infrared technique uses thermography (IRT) imaging measures the temperature distribution across the transformer surface to identify any areas of overheating or insulation breakdown [2]. This method is based on the fact that most components in a system experience a temperature rise when not functioning properly. IRT is a technique that is not invasive and that requires no contact to transform heat energy into a visible thermal image. This method is often used in conjunction with artificial intelligence techniques to detect the occurence and type of incipient faults [3].

B. Frequency Response Analysis

Frequency Response Analysis (FRA) as a diagnostic approach involves the application of an AC voltage signal to the transformer and measuring the resulting current at different frequencies. The frequency response of the transformer is then analyzed to detect any deviations from the expected response, which can indicate the presence of incipient faults [4]. The FRA test can detect various faults such as winding deformation, core faults, and changes in the transformer's magnetic properties [5].

C. Insulation Resistance Testing

Insulation resistance testing is a commonly used diagnostic method for detecting transformer incipient faults related to insulation degradation. This test involves measuring the resistance of the insulation material between two conductors, such as transformer windings, with a megohmmeter, also known as an insulation resistance tester. During the test, a high-voltage direct current source is applied across the insulation material, and the resulting current flow is measured. The measured current flow is then used to calculate the insulation resistance [6,7]. A decrease in insulation resistance over

time may indicate insulation degradation, which can be caused by environmental factors such as moisture, heat, or chemical contamination. Degraded insulation can result in a decrease in the transformer's dielectric strength and an increased risk of short circuits or ground faults.

D. Partial Discharge Analysis

This test which measures electrical discharges within the transformer insulation is used to identify areas of insulation breakdown or degradation [8]. Partial discharge analysis typically involves the use of sensors or probes that are placed on the transformer's insulation surface to detect electrical discharges. The electrical signals are then recorded and analyzed to determine the location and severity of the partial discharges. Various techniques for carrying out partial discharge tests exist for online and offline transformers and these include electrical, electromagnetic, optical, gas presence and acoustic emission methods [9].

E. Power Factor Testing

This test measures the power factor of the transformer to identify any changes in the dielectric properties of the insulation material [10]. A decrease in power factor can indicate a potential insulation breakdown or degradation.

F. Dissolved Gas Analysis

Dissolved Gas Analysis (DGA) works by identifying and analyzing the gases dissolved in transformer oil [11]. Transformers operate at high temperatures, and the insulating oil is exposed to high electric and magnetic fields, leading to the production of gases. When incipient faults occur, they cause additional gas production, which alters the gas levels and ratios present in the transformer oil.

III. DGA Methods

DGA is a major approach capable of diagnosing incipient faults in transformers. It involves taking a sample of the transformer oil and performing an analysis on gases dissolved in it. The sample is usually taken during routine maintenance or when there is suspicion of a fault in the transformer. Gases could be generated as a result of arcing, corona discharge, low energy sparks, and overheating. The types and concentration of gases produced is then used as a basis for identifying the fault type [12-16].

Some of the methods used to analyse the composition of dissolved gases in transformer oil include spectroscopic methods like gas chromatography, Fourier Transform infra-red spectroscopy (FTIR), photoacoustic spectroscopy (PAS) and ultraviolet-visible spectroscopy (UV-Vis) [17-18]. Compact and portable chemical sensors that can detect and quantify the presence of specific gases in the insulating oil can also be used but generally have sensitivity and selectivity issues [19].

The interpretation of DGA results is a function of the type and concentration of gases, the ratios of different gases present in the insulating oil, trend analysis in DGA results collected over time as well as the history of the equipment being analyzed, such as its age, maintenance history, and operating conditions. Various approaches have been put forward for interpretation of the results of DGA tests. These methods can be divided into both traditional and artificial intelligence methods and are discussed in the following sections.

A. Traditional Methods

In this section, various traditional methods for DGA interpretation are discussed.

i. Expert analysis

Interpreting DGA results often requires expertise and experience to accurately diagnose faults or abnormalities. An expert analyst can take into account the equipment history and operating conditions, as well as other diagnostic information, to provide a comprehensive interpretation of the results. The quality of diagnosis produced by this method however depends, to a large extent, on the quality of the human knowledge base available. Expert analysis by different personnel may therefore not necesarily lead to the same diagnosis for the same oil sample [20, 21].

ii. Key gas method

In this method, the concentration of specific gases found to be dissolved in insulation oil is measured [22, 23]. The presence of nitrogen and oxygen indicates non-fault condition but the presence of hydrocarbons like Methane (CH₄), Acetylene (C₂H₂), Ethylene (C₂H₄), Ethane (C₂H₆), and Hydrogen (H₂) as well as Carbon oxides (CO, CO₂) signal the presence of incipient faults. The key gas method involves identifying the gases that are present in the highest concentrations in the DGA sample and using those gases to determine the abnormality present in the equipment [14].

Elevated levels of hydrogen gas can indicate the presence of corona and partial discharge, elevated levels of methane and ethane gas can indicate low temperature overheating, elevated levels of ethylene gas can indicate thermal faults, such as overheating or hot spots in the equipment while elevated levels of acetylene gas can indicate severe thermal faults, such as arcing or combustion in the equipment. Elevated levels of carbon oxides can indicate a fault a degradation of cellulose insulation [14, 24].

For accurate diagnosis using the key gas method, adequate expert experience is required

since the method does not specify the relationship between the actual fault present and the dissolved gas types in numerical terms [12].

iii. Dornenburg ratio method

The Dornenburg ratio method [25] identifies possible problems developing in a transformer using gas ratios obtained from its oil sample. These ratios are used in classifying faults as thermal, corona discharge or arcing. The gas ratios used in the interpretation of the method include methane/hydrogen, acetylene/methane, ethylene/ethane acetylene/ethylene. and Further details on concentration limits that the various gases present must satisfy for the method to come up with a valid diagnosis can be found in [22]. However, the method is susceptible to numerous "no interpretation" cases in its output as a result of mismatch between actual ratio ranges calculated and the expected ratios specified as the basis of diagnosis in the method [14].

iv. Rogers ratio method

Just like the Dornenburg ratio technique, this method uses ratios of key gases to identify fault types. It is however capable of identifying more fault types than the Dornenburg ratio method [14]. The gas ratios used are methane/hydrogen, ethane/methane, ethylene/ethane acetylene/ethylene [26]. Depending on the value range for each of these four ratios, a specific fault diagnosis is made. Different faults identifiable include normal deterioration or ageing, partial discharge, varying degrees of overheating, circulating currents in winding, core and tank, flashover, arcing, partial discharge with tracking, continuous sparking etc. However, in some cases, the ratio values obtained from calculation do not agree with the codes specified in this method for diagnosis of various faults.

Later studies have indicated that the ethane/methane ratio does not have close relationship with the faults [14, 26] and as such, is excluded from the modified Rogers ratio method [27].

v. IEC ratio method

In the IEC ratio method [28], the C2H6/CH4 ratio is excluded just like in the modified Rogers Ratio method. In specifying codes for diagnosing a fault, the ranges assigned for the other three gas ratios are different from that used in the Rogers ratio method. Fault types identifiable using the IEC method include ageing, low energy density partial discharge, high energy density partial discharge, discharge of low energy (continuous sparking), discharge of high energy (arcing), and thermal faults of varying severity.

vi. Duval triangle method

This is a graphical DGA analysis technique used to detect fault in a power transformer [29-31]. It uses only the concentration values of methane, acetylene and ethylene plotted on all the three sides of a triangle. This triangle contains seven fault zones and can be used to identify faults like partial discharge, discharge of low/high energy, thermal faults at various temperatures, and electrical arcing. However, this method may lead to wrong diagnosis if fault data point lies at the intersection of fault zones. Also, no region of the triangle maps to normal ageing condition in a transformer [32, 33].

Two additional Duval triangle variants—called Duval Triangle 4 (based on hydrogen, methane, and ethane), Duval Triangle 5 (based on methane, ethane, and ethylene) have been developed to take into account the effect of hydrogen and lower molecular weight hydrocarbon gases which the original Duval triangle method failed to consider [34].

vii. Improved traditional methods

Different authors have tried to refine these traditional methods to improve their capability and accuracy. In [26], the overall accuracy of the IEC and Rogers ratio methods was improved by using diagnostic results from laboratory tests to refine the codes for IEC and Rogers methods. This was then used in building a fault diagnosis system. Also, an improvement to the Duval triangle method called the Duval pentagon method was presented in [35, 36], while a heptagon graph was presented in [37] to enhance the diagnostic accuracy. In [38], a three ratio technique (TRT) in which three diagnostic ratios formed from combinations of dissolved gas concentrations was presented. An extended method which combines the Duval's triangle and IEC ratio methods was presented in [32] to take care of difficulties that the Duval triangle method experiences with fault points located at the intersection of fault zones. These improved methods may however be plagued generalization difficulties since many of them are based on isolated case studies [39].

B. Artificial Intelligence Methods

The interpretation of most traditional methods depends on the level of experience of the analyst, and the results may sometimes be unreliable [39]. In order to further enhance diagnostic accuracy, different artificial intelligence (AI) techniques have developed to improve the accuracy of the conventional and graphical methods. This is achieved by reducing cases of failed diagnosis due to inconclusive codes in the case of ratio methods and challenges with diagnosis when the fault lies at the intersection of fault boundaries in the case of Duval triangle methods.

AI methods include artificial neural networks, fuzzy logic and support vector machine. In addition, various evolutionary and swarm optimization techniques, such as particle swarm optimization (PSO), genetic algorithm (GA), bat algorithm etc. have been used to yield improved performance.

i. Artificial neural networks

ANN-based incipient fault diagnosis models are trained using gas concentration/ratio data obtained from power transformers under varying conditions of operation. During training, the main parameters of the network model are progressively adjusted until a mapping is established between the information on the dissolved gas ratios and the actual fault present [40].

In [41, 42], an ANN trained using the Levenberg-Marquardt algorithm was developed to classify seven transformer incipient fault types. Three combustible gas ratios were calculated and the IEC ratio method was deployed in interpreting the fault present. The Levenberg-Marquardt algorithm was selected because of its fast training time. In [43], a multilayer ANN trained using the "trainlm" training algorithm in MATLAB was utilized transformer fault prediction. Fault interpretation was based on both the key gas and Duval triangle methods. Different linear activation functions were used in the neural network architecture.

A comparative study of neural networks using different traditional approaches as the diagnostic criteria was presented in [44] while [45] integrated the results of different neural network models for DGA in a smart fault diagnostic system to improve overall fault condition monitoring. In [46], probabilistic neural network models were developed for dissolved gas analysis based on IEC ratios while

[13] presented a deep learning convolutional neural network model based on the various gas ratio methods and their hybrids.

ii. Support vector machine

Support Vector Machine (SVM) is employed in power transformer DGA fault diagnosis because it generalizes excellently to new knowledge requires minimal control parameters for its operation and works well with nonlinear problems [47]. In [48], SVM was used to predict transformer faults while the k-Nearest Neighbour method was used to supply missing values in the DGA dataset. In [49], SVM was used alongside kNN with Duval triangle as the diagnostic criteria. A multilayer SVM classifier was developed for transformer fault identification in [50].

It has been reported however that SVMs fail to perform well when the dataset is complex and of high dimension [46].

iii. Fuzzy logic

fuzzy logic (FL) techniques Using transformer fault diagnosis [51] involves the use of a fuzzy inference system (FIS) which includes a fuzzifier, a fuzzy inference engine and a defuzzifier. Fuzzification is the process of converting exact inputs into fuzzy values using membership functions. Membership functions represent the degree of membership of an input value in a fuzzy set. Fuzzification is necessary because real-world inputs are often vague, imprecise, or uncertain. By using fuzzy values, the system can reason about the inputs in a more flexible and robust manner. The fuzzy inference engine operates on the fuzzy inputs by means of the fuzzy rules to determine the extent of membership of the output in the associated fuzzy set. Defuzzification converts the fuzzy output into a crisp exact value by taking into

account the degree of membership of the output in the corresponding fuzzy set.

In [51], a FL diagnostic system for the IEC ratio was presented, a fuzzy logic system based on both IEC and Rogers ratio methods was presented in [52] while in [53], the method presented is based on a combination of three traditional methods. Although the fuzzy logic technique has the advantages of convenience and intuition, when faced with large data sets, their classification ability declines sharply [46].

iv. Hybrid methods

In [46], the probabilistic neural network model was hybridized with different algorithms such as modified moth flame optimization algorithm, particle swarm optimization algorithm, bat algorithm genetic algorithm. The and optimization algorithms were used to obtain optimal smoothing factor of the PNN to get improved performance. In [54, 55], genetic algorithm was used to select appropriate parameters for the support vector machine algorithm. A hybrid of SVM with the modified PSO algorithm with time varying acceleration coefficient was presented in [56] for improved fault diagnosis while in [57], an improved krill herd (IKH) algorithm was used to select optimal SVM parameters. In the presence of measurement uncertainties, [58] hybridized the fuzzy logic technique with the Hybrid Grey Wolf Optimizer algorithm to reduce the effect of uncertainties on the diagnostic ability of the fuzzy logic method. In [59], fuzzy C-means and quantum-inspired particle swarm optimization algorithms were used in selecting configuration of a radial basis function neural network developed for automatic incipient fault diagnosis.

IV. Conclusion

In dissolved gas analysis, the goal is to correctly identify which incipient fault generated the detected gases in the transformer oil. In this different traditional study, and artificial intelligence methods used in fault diagnosis using DGA were discussed. Improvements on the traditional methods as well as hybrids of AI methods with various optimization techniques were also highlighted. A summary of the advantages and disadvantages of the different methods is provided in Table 1. This study will assist in selection of appropriate transformer techniques diagnosis by various fault practitioners.

References

[1] Butler-Purry, K. L. and Bagriyanik, M. "Identifying transformer incipient events for maintaining distribution system reliability," *Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003*, Big Island, HI, USA, 2003, pp. 1-8.

[2] dos Santos, G.M., de Aquino, R.R.B. and Lira, M.M.S. "Thermography and artificial intelligence in transformer fault detection", *Electr Eng*, Vol. 100, 2018, pp. 1317–1325.

[3] Fang, J., Yang, F., Tong, R., Yu, Q. and Dai, X. "Fault diagnosis of electric transformers based on infrared image processing and semi-supervised learning", *Global Energy Interconnection*, Vol. 4, Issue 6, 2021, pp. 596-607.

Table 1: Advantages and Disadvantages of Various Methods Discussed

Methods discussed	Advantages	Disadvantages
Expert analysis	An expert analyst can take into account	Expert analysis by different personnel may
	the equipment history, operating	not necesarily lead to the same diagnosis
	conditions, etc to arrive at comprehensive	for the same oil sample
T 0	diagnosis	
Key Gas method	Simple to use	Human expert knowledge required for
Ratio methods (Rogers	Methods are simple and quantitative; their	interpretation Only applicable when the gas levels in the
Ratio, Dornenburg	applicability is independent of	oil samples are not too low; results in many
Ratio, IEC Ratio)	transformer oil volume.	inconclusive or wrong fault identifications;
1	character on votalities	human expert knowledge required for interpretation
Duval triangle method Improved traditional methods (using new gas	Simple to apply; always identifies a fault, with good accuracy; allows for fault evolution with respect to time to be followed visually. Improved diagnostic accuracy; low complexity involved in the improved	The use of information on three gases may not be sufficient to fully characterize transformer condition; only applicable when the gas levels in oil samples are not too low; care should be exercised in using the method since it will identify a fault even if none is present; difficulty classifying faults at the boundary of fault zones; non-detection of concurrent (multiple) faults; human expert knowledge required for correct fault diagnosis. May suffer from generalization problem since many of them are produced using
ratios, pentagon,	techniques	isolated case studies.
heptagon etc) Stand-alone AI methods (ANN,FL, SVM)	Improved diagnosis over traditional methods- inconclusive fault diagnosis in the traditional ratio methods is well taken of; ANNs and SVMs have excellent generalization capability; FL is simple to use and intuitive; SVMs have minimal	Membership functions in fuzzy logic have to be selected appropriately; parameters of ANN or SVM have to be tuned to achieve good results; performance depends on the quality and mix of the training data; FL and SVMs fail to perform well when the dataset
Hybrid AI methods	control parameters for its operation; methods have less dependence on human expert to arrive at a diagnosis. Improved diagnosis; optimization techniques are used to select appropriate network architecture for ANN, SVM, FL; less dependence on human expert.	is complex and of high dimension. More complex to implement; performance depends on the quality and mix of the training data.

- [4] Senobari, R.H., Sadeh, J. and Borsi, H. "Frequency response analysis (FRA) of transformers as a tool for fault detection and location: A review", *Electric Power Systems Research*, Vol.155, 2018, pp. 172-183, https://doi.org/10.1016/j.epsr.2017.10.014.
- [5] DV-Power. "Fundamental Understanding of Frequency Response Characteristic" https://www.dv-power.com/fundamental-understanding-of-frequency-response-characteristic/, Accessed on February 26, 2023.
- [6] Soni, R. and Mehta, B. (2021). "Review on asset management of power transformer by diagnosing incipient faults and faults identification using various testing methodologies", *Engineering Failure Analysis*, Vol.128,105634.
- [7] IEC Technical Committee 109. "Standards on insulation co-ordination for low-voltage equipment", 2018.
- [8] Raymond, W. J. K., Illias, H.A., Bakar, A.H.A. and Mokhlis, H. "Partial discharge classifications: Review of recent progress," *Measurement*, Vol. 68, 2015, pp. 164–181.
- [9] Hussain, M. R., Refaat, S. S., and Abu-Rub, H. (2021). "Overview and Partial Discharge Analysis of Power Transformers: A Literature Review", *IEEE Access*, Vol. 9, pp. 64587-64605.
- [10] Zhang, S. "Analysis of some measurement issues in bushing power factor tests in the field," *IEEE Trans. Power Del.*, Vol. 21, No. 3, Jul. 2006, pp. 1350–1356.
- [11] Ibrahim, S.I. and Sherif, S.M.G. "DGALab: An Extensible Software Implementation for Dissolved Gas analysis", *IET Generation Transmission Distribution*, Vol. 12, issue 18, 2018, pp. 4117 4124.
- [12] Sun, H-C & Huang, Y-C & Huang, C-M. "A Review of Dissolved Gas Analysis in Power

- Transformers", *Energy Procedia*, Vol. 14, 2012, pp. 1220-1225.
- [13] Taha, I. B. M., Ibrahim, S. and Mansour, D.-E.A. "Power Transformer Fault Diagnosis Based on DGA Using a Convolutional Neural Network With Noise in Measurements", *IEEE Access*, Vol. 9, 2021, pp. 111162-111170.
- [14] Faiz, J. and Soleimani, M. "Dissolved gas analysis evaluation in electric power transformers using conventional methods- a review," *IEEE Trans. Dielectr. Electr. Insul.*, Vol. 24, No. 2, 2017, pp. 1239–1248.
- [15] Taha, I. B. M., Hoballah, A. and Ghoneim, S. S. M. "Optimal ratio limits of Rogers' four-ratios and IEC 60599 code methods using particle swarm optimization fuzzy-logic approach," *IEEE Trans. Dielectr. Electr. Insul.*, Vol. 27, No. 1, 2020, pp. 222–230.
- [16] Ward, S. A., El-Faraskoury, A., Badawi, M., Ibrahim, S. A., Mahmoud, K., Lehtonen, M. and Darwish, M.M.F. "Towards precise interpretation of oil transformers via novel combined techniques based on DGA and partial discharge sensors", *Sensors*, Vol. 21, No. 6, 2021, 2223
- [17] Liu, X., Zhou, F. and Huang, F. "Research on on-line DGA using FTIR (power transformer insulation testing)", *Proceedings. International Conference on Power System Technology*, Kunming, China Vol. 3, 2002, pp. 1875- 1880.
- [18] Osama G., Saber, S. and Salah, E. "Power Transformer Incipient Faults Diagnosis Based on Dissolved Gas Analysis", *TELKOMNIKA Indonesian Journal of Electrical Engineering*, Vol. 17, No.1, 2016, pp. 10 16.
- [19] Sun, C., Ohodnicki, P. R. and Stewart, E. M. "Chemical Sensing Strategies for Real-Time Monitoring of Transformer Oil: A Review", *IEEE Sensors Journal*, Vol. 17, No. 18, 2017, pp. 5786-5806.

- [20] Sun, H-C, Huang, Y-C and Huang, C-M. "Fault Diagnosis of Power Transformers Using Computational Intelligence: A Review", *Energy Procedia*, Volume 14, 2012, pp. 1226-1231.
- [21] Abu-Siada, A. and Islam, S. "A new approach to identify power transformer criticality and asset management decision based on dissolved gas-in-oil analysis", *IEEE Transactions on Dielectrics and Electrical Insulation*, Vol. 19, No. 3, 2012, pp. 1007–1012.
- [22] IEEE Standard C57.104-2008. "IEEE guide for the interpretation of gases generated in oil-immersed transformers", 2008.
- [23] IEC Standard 60567. "Guide for the sampling of gases and of oil-filled electrical equipment and for the analysis of free and dissolved gases", 2005.
- [24] Bakar, N.A., Abu-Siada, A. and Islam, S. "A review of dissolved gas analysis measurement and interpretation techniques", *IEEE Electrical Insulation Magazine*. Vol. *30*, *No.* 3, 2014, pp. 39–49.
- [25] Dornenburg E. and Strittmatter, W. Monitoring oil-cooled transformers by gas analysis. *Brown Boveri Review*, Vol. 61, 1974, pp. 238–247.
- [26] Taha, I. B. M., Ghoneim, S. S. M. and Duaywah, A. S. A. "Refining DGA methods of IEC Code and Rogers four ratios for transformer fault diagnosis", 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016, pp. 1-5.
- [27] IEEE Standard C57.104-1991. "IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers" 1991.
- [28] IEC Standard 60599. "Mineral oil-impregnated electrical equipment in service—guide to the interpretation of dissolved and free gases analysis", 2007.

- [29] Duval M. "A review of fault detectable by gas-in-oil analysis in transformers", *IEEE Electrical Insulation Magazine*, Vol. 18, 2002, pp. 8–17.
- [30] Duval M. and Dukarm J. "Improving the reliability of transformer gas-in-oil diagnosis," *IEEE Electrical Insulation Magazine*, Vol 21, 2005, pp. 21–27.
- [31] Akbari A., Setayeshmehr A., Borsi H. and Gockenbach E. "A software implementation of the Duval triangle method", *Proceedings of IEEE International Symposium on Electrical Insulation (ISEI)*, Vancouver, BC, 2008, pp.124-127.
- [32] Wani, S.A., Khan, S.A., Gupta, D. and Nezami, M.M. "Diagnosis of incipient dominant and boundary faults using composite DGA method", *Int. Trans. Electr. Energy Syst.* Vol. 27, 2017, e2421.
- [33] Wani, S.A., Gupta, D., Farooque, M.U., Khan, S.A. "Multiple incipient fault classification approach for enhancing the accuracy of dissolved gas analysis (DGA)". *IET Sci Meas Technol*, Vol. 13, No.7, 2019, pp. 959–967.
- [34] Duval, M.. "New frontiers of DGA interpretation for power transformers and their accessories", *Society of Electrical and Electronics Engineers in Israel (SEEEI)*, 2012, pp. 1-8.
- [35] Mansour, D.-E. A. "A new graphical technique for the interpretation of dissolved gas analysis in power transformers", *Proc. Annu. Rep. Conf. Electr. Insul. Dielectr. Phenomena*, Oct. 2012, pp. 195–198.
- [36] Duval, M. and Lamarre, L. "The Duval pentagon—A new complementary tool for the interpretation of dissolved gas analysis in transformers", *IEEE Elect. Insul. Mag.*, Vol. 30, No. 6, 2014, pp. 9–12.
- [37] Gouda, O.E., El-Hoshy, S.H. and El-Tamaly, H.H. "Proposed heptagon graph for DGA interpretation of oil transformers," *IET*

- Gener., Transmiss. Distrib., Vol. 12, No. 2, pp. 490–498, Jan. 2018.
- [38] Gouda, O.E., El-Hoshy, S.H., and El-Tamaly, H.H. "A new proposed three ratios technique for the interpretation of mineral oil transformers based dissolved gas analysis", *IET Gener. Transm. Distrib.*, Vol. 12, No. 11, 2018, pp. 2650–2661.
- [39] Wani, S. A., Rana, A. S., Sohail, S., Rahman, O., Parveen, S., and Khan, S. A. "Advances in DGA based condition monitoring of transformers: A review". Renewable and Sustainable Energy Reviews, Vol 149, 2021, 11347.
- [40] Zhang, W., Yang, X., Deng, Y., and Li, A. "An Inspired Machine-Learning Algorithm with a Hybrid Whale Optimization for Power Transformer PHM", *Energies*, Vol. 13, 2020, 3143.
- [41] Zakaria, F., Johari, D. and Musirin, I. "Artificial neural network (ANN) application in dissolved gas analysis (DGA) methods for the detection of incipient faults in oil-filled power transformer," 2012 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 2012, pp. 328-332.
- [42] Thango, B.A. "On the Application of Artificial Neural Network for Classification of Incipient Faults in Dissolved Gas Analysis of Power Transformers" *Mach. Learn. Knowl. Extr.* Vol. 4, 2022, pp. 839-851.
- [43] Poonnoy, N., Suwanasri, C. and Suwanasri, T. "Neural Network Approach to Dissolved Gas Analysis for Fault Analysis in Power Transformers", 2022 International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, 2022, pp. 1-4.
- [44] Guardado, J. L., Naredo, J. L., Moreno, P. and Fuerte, C. R. "A comparative study of neural network effificiency in power transformers diagnosis using dissolved gas

- analysis", IEEE Trans. Power Del., Vol. 16, No. 4, 2001, pp. 643–647.
- [45] Ghoneim, S. M. S., Ibrahim, B. M. T. and Nagy, I. E. "Integrated ANN-based proactive fault diagnostic scheme for power transformers using dissolved gas analysis", *IEEE Trans. Dielectr. Electr. Insul.*, Vol. 23, No. 3, 2016, pp. 1838–1845.
- [46] Zhou Y., Tao L., Yang X. and Yang L. "Novel Probabilistic Neural Network Models Combined with Dissolved Gas Analysis for Fault Diagnosis of Oil-Immersed Power Transformers". *ACS Omega*, Vol.6, Issue 28, 2021, pp. 18084-18098.
- [47] Ganyun, L.V., Haozhong, C., Haibao, Z., and Lixin, D. "Fault diagnosis of power transformer based on multi-layer SVM classifier", *Elec Power Syst Res, Vol.* 74, No. 1, 2005, pp 1–7.
- [48] Sahri, Z. and Yusof, R. "Support Vector Machine-Based Fault Diagnosis of Power Transformer Using k Nearest-Neighbor Imputed DGA Dataset". *Journal of Computer and Communications*, Vol. 2, 2014, pp. 22-31.
- [49] Benmahamed, Y., Teguar, M. and Boubakeur, A. "Application of SVM and KNN to Duval pentagon for transformer oil diagnosis", *IEEE Trans. Dielectr. Electr. Insul.*, Vol. 24, No. 6, 2017, pp. 3443–3451.
- [50] Bacha, K., Souahlia, S. and Gossa, M. "Power transformer fault diagnosis based on dissolved gas analysis by support vector machine", *Electric Power Systems Research*, Volume 83, Issue 1, 2012, Pages 73-79.
- [51] Noori, M., Effatnejad, R. and Hajihosseini, P. "Using dissolved gas analysis results to detect and isolate the internal faults of power transformers by applying a fuzzy logic method", *IET Gener. Transm. Distrib.*, Vol. 11, No. 10, 2017, pp. 2721–2729.
- [52] Bhalla, D., Bansal, R. K. and Gupta, H. O. "Transformer incipient fault diagnosis based on

- DGA using fuzzy logic", *India International Conference on Power Electronics 2010 (IICPE2010)*, New Delhi, India, 2011, pp. 1-5.
- [53] Taha, I.B.M., Ghoneim, S.S.M. and Zaini, H.G. "A fuzzy diagnostic system for incipient transformer faults based on DGA of the insulating transformer oils", *Int. Rev. Electr. Eng.*, Vol. 11, No. 3, 2016, pp. 305–313.
- [54] Fei, S. and Zhang X. "Fault diagnosis of power transformer based on support vector machine with genetic algorithm", *Expert Systems with Applications*, Vol. 36, Issue 8, 2009, pp. 11352-11357.
- [55] Li, J. Z., Zhang, Q.G., Wang, K. and Wang, J.Y. "Optimal dissolved gas ratios selected by genetic algorithm for power transformer fault diagnosis based on support vector machine,", *IEEE Trans. Dielectr. Electr. Insul.*, Vol. 23, No. 2, 2016, pp. 1198–1206.
- [56] Illias H.A. and Zhao L. W. "Identification of transformer fault based on dissolved gas

- analysis using hybrid support vector machine-modified evolutionary particle swarm optimization". *PLoS One*, Vol. 13, No. 1, 2018, e0191366.
- [57] Zhang, J.Y., Li, X., Zheng, H. Yao, H., Liu, J., Zhang, C., Peng, H. and Jiao, J. "A fault diagnosis model of power transformers based on dissolved gas analysis features selection and improved krill herd algorithm optimized support vector machine", *IEEE Access*, Vol. 7, 2019, pp. 102803–102811.
- [58] Hoballah, A., Mansour, D.-E.-A. and Taha, I.B.M. "Hybrid grey wolf optimizer for transformer fault diagnosis using dissolved gases considering uncertainty in measurements", *IEEE Access*, Vol. 8, 2020, pp. 139176–139187.
- [59] Meng K., Dong Z.Y., Wang D.H., and Wong K.P. "A self-adaptive RBF neural network classifier for transformer fault analysis", *IEEE Trans. Power Syst.*, Vol. 25, 2010, pp. 1350–1360.