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Abstract: Power transformers play an important role in ensuring efficient and reliable transmission

and distribution of electrical power. Their failure can lead to significant disruptions in power

supply and safety concerns. Transformer incipient faults may occur due to various reasons,

including electrical, mechanical or environmental factors. They develop slowly and can lead to

serious damage if not diagnosed and corrected in time. In this review, various techniques for

diagnosing this category of faults are highlighted before focusing on Dissolved Gas Analysis

(DGA). Discussion on DGA centres on the traditional methods for fault diagnosis as well as

various stand-alone and hybrid artificial intelligence techniques developed to improve the fault

diagnostic ability of the traditional methods.

Keywords: Dissolved Gas Analysis, Power Transformer, Incipient Faults, Gas ratio methods,

Artificial Intelligence methods

I. Introduction

Power transformers are crucial components of
the electric power grid that are responsible for
the efficient and reliable transmission and
distribution of electrical power. They are used
to step-up or step-down the voltage of
electricity, depending on the requirements of
the system. This is necessary because different
parts of the grid operate at different voltage
levels, and the voltage needs to be stepped up
or down as required to ensure efficient and
reliable operation. By stepping up the voltage of
electricity ~ before  transmission,  power
transformers reduce the amount of energy lost
due to resistance in the transmission lines,

thereby improving energy efficiency in the grid.

Power transformers are often connected to
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standby generators or battery systems that can
supply power to critical loads in the event of a
power failure. With increasing prevalence of
wind and solar energy sources in the grid, power
transformers are needed to integrate renewable
sources into the system. They are used to step-
up the voltage of electricity generated by these
sources to match the voltage levels of the grid,
and to regulate the flow of power through the
system.

Power transformers are central to effective and
reliable power system operation and their failure
can lead to significant disruptions and safety
concerns. Transformer failure may be described
as the loss of its ability to operate in normal
condition and this can occur due to various
reasons, including electrical, mechanical, or
environmental factors. Some of the common
causes of  transformer  failure include
overloading, short circuits, insulation failure and
overvoltage. Mechanical faults can occur when
the cooling mechanism such as fans fail to

operate properly. Exposure of transformers to
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extreme environmental factors such as
temperature, moisture and chemicals can also
cause corrosion, rusting, and other forms of

damage.

Transformer internal faults can be classified into
short circuit faults and incipient faults. Internal
short circuit faults are sudden faults which
occur when turns of transformer windings get
in contact with one another or in contact with
earth, and so, they require fast action by
protective devices to disconnect the transformer
from the electric system. Incipient faults, on the
other hand, develop slowly and can lead to
serious damage if not diagnosed and corrected
in time [1]. They often involve a gradual
deterioration of winding or core insulation,
overheating, overloading or oil contamination,
and their presence cannot be detected by using
fuses or relays. Timely detection and correction
of these faults in a transformer is important to
prevent more serious damage and to ensure safe

and efficient operation of the power system.

In this study, a review of different techniques
for transformer incipient fault diagnosis is
carried out, with emphasis on Dissolved Gas
Analysis (DGA) technique, followed by a
discussion of wvarious traditional and artificial

intelligence  methods  used for DGA
interpretation and fault diagnosis.
II. Techniques for Incipient Fault

Diagnosis

There are various techniques for diagnosing
incipient faults in power transformers. These
include infrared thermography, frequency
response analysis, insulation resistance testing,
partial discharge analysis, power factor testing

and dissolved gas analysis.

A. Infrared Thermography

This which
thermography (IRT) imaging measures the

technique uses  Infrared
temperature distribution across the transformer
surface to identify any areas of overheating or
insulation breakdown [2]. This method is based
on the fact that most components in a system
experience a temperature rise when not
functioning properly. IRT is a technique that is
not invasive and that requires no contact to
transform heat energy into a visible thermal
image. This method is often used in conjunction
with artificial intelligence techniques to detect

the occurence and type of incipient faults [3].

B. Frequency Response Analysis

Frequency Response Analysis (FRA) as a
diagnostic approach involves the application of
an AC voltage signal to the transformer and
measuring the resulting current at different
frequencies. The frequency response of the
transformer is then analyzed to detect any
deviations from the expected response, which
can indicate the presence of incipient faults [4].
The FRA test can detect various faults such as
winding deformation, core faults, and changes

in the transformer's magnetic properties [5].

C. Insulation Resistance Testing

Insulation resistance testing is a commonly used
diagnostic method for detecting transformer
incipient faults related to insulation degradation.
This test involves measuring the resistance of
the insulation material between two conductorts,
such as transformer windings, with a
megohmmeter, also known as an insulation
resistance tester. During the test, a high-voltage
direct current source is applied across the
insulation material, and the resulting current
flow is measured. The measured current flow is
then used to calculate the insulation resistance

[6,7]. A decrease in insulation resistance over

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)



time may indicate insulation degradation, which
can be caused by environmental factors such as
moisture, heat, or chemical contamination.
Degraded insulation can result in a decrease in
the transformer's dielectric strength and an

increased risk of short circuits or ground faults.

D. Partial Discharge Analysis

This test which measures electrical discharges
within the transformer insulation is used to
identify areas of insulation breakdown or
[8]. Partial
typically involves the use of sensors or probes

degradation discharge analysis
that are placed on the transformer's insulation
surface to detect electrical discharges. The
electrical signals are then recorded and analyzed
to determine the location and severity of the
partial discharges. Various techniques for
carrying out partial discharge tests exist for
online and offline transformers and these
include electrical, electromagnetic, optical, gas

presence and acoustic emission methods [9].

E. Power Factor Testing

This test measures the power factor of the
transformer to identify any changes in the
dielectric properties of the insulation material
[10]. A decrease in power factor can indicate a
potential insulation breakdown or degradation.

F. Dissolved Gas Analysis

Dissolved Gas Analysis (DGA) works by
identifying and analyzing the gases dissolved in
transformer oil [11]. Transformers operate at
high temperatures, and the insulating oil is
exposed to high electric and magnetic fields,
leading to the production of gases. When
incipient faults occur, they cause additional gas
production, which alters the gas levels and

ratios present in the transformer oil.

III. DGA Methods

DGA is a major approach capable of diagnosing
incipient faults in transformers. It involves
taking a sample of the transformer oil and
performing an analysis on gases dissolved in it.
The sample is usually taken during routine
maintenance or when there is suspicion of a
fault could be
generated as a result of arcing, corona discharge,

in the transformer. Gases
low energy sparks, and overheating. The types
and concentration of gases produced is then
used as a basis for identifying the fault type [12-
16].

Some of the methods used to analyse the
composition of dissolved gases in transformer
oil include spectroscopic methods like gas
chromatography, Fourier Transform infra-red
(FTIR),
spectroscopy  (PAS)
spectroscopy (UV-Vis) [17-18]. Compact and

spectroscopy photoacoustic

and  ultraviolet-visible

portable chemical sensors that can detect and
quantify the presence of specific gases in the
insulating oil can also be used but generally have
sensitivity and selectivity issues [19].

The interpretation of DGA results is a function
of the type and concentration of gases, the
ratios of different gases present in the insulating
oil, trend analysis in DGA results collected over
time as well as the history of the equipment
being analyzed, such as its age, maintenance
Various

history, and operating conditions.

approaches have been put forward for
interpretation of the results of DGA tests.
These methods divided into both

traditional and artificial intelligence methods

can be

and are discussed in the following sections.

A. Traditional Methods

In this section, various traditional methods for
DGA interpretation are discussed.
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1. Expert analysis
DGA

expertise and experience to accurately diagnose

Interpreting results often requires
faults or abnormalities. An expert analyst can
take into account the equipment history and
operating conditions, as well as other diagnostic
information, to provide a comprehensive
interpretation of the results. The quality of
diagnosis produced by this method however
depends, to a large extent, on the quality of the
human knowledge base available. Expert
analysis by different personnel may therefore
not necesarily lead to the same diagnosis for the

same oil sample [20, 21].

ii. Key gas method

In this method, the concentration of specific
gases found to be dissolved in insulation oil is
measured [22, 23]. The presence of nitrogen and
oxygen indicates non-fault condition but the
presence of hydrocarbons like Methane (CH,),
Acetylene (C,H,), Ethylene (C,H,), Ethane
(C,Hy), and Hydrogen (H,) as well as Carbon
(CO, COy
incipient faults. The key gas method involves

oxides signal the presence of
identifying the gases that are present in the
highest concentrations in the DGA sample and
using those gases to determine the abnormality
present in the equipment [14].

Elevated levels of hydrogen gas can indicate the
presence of corona and partial discharge,
elevated levels of methane and ethane gas can
indicate low temperature overheating, elevated
levels of ethylene gas can indicate thermal faults,
such as overheating or hot spots in the
equipment while elevated levels of acetylene gas
can indicate severe thermal faults, such as arcing
or combustion in the equipment. Elevated
levels of carbon oxides can indicate a fault a
degradation of cellulose insulation [14, 24].

For accurate diagnosis using the key gas
method, adequate expert experience is required

since the method does not specify the
relationship between the actual fault present and

the dissolved gas types in numerical terms [12].

i1. Dornenburg ratio method

The Dornenburg ratio method [25] identifies
possible problems developing in a transformer
using gas ratios obtained from its oil sample.
These ratios are used in classifying faults as
thermal, corona discharge or arcing. The gas
ratios used in the interpretation of the method
include methane/hydrogen, acetylene/methane,
ethylene/ethane  and  acetylene/ethylene.
Further details on concentration limits that the
various gases present must satisfy for the
method to come up with a valid diagnosis can
be found in [22]. However, the method is
susceptible to numerous “no interpretation”
cases in its output as a result of mismatch
between actual ratio ranges calculated and the
expected ratios basis of

diagnosis in the method [14].

specified as the

1v.  Rogers ratio method

Just like the Dornenburg ratio technique, this
method uses ratios of key gases to identify fault
types. It is however capable of identifying more
fault types than the Dornenburg ratio method
[14]. The gas ratios used are methane/hydrogen,
ethane/methane, ethylene/ethane and
acetylene/ethylene [26]. Depending on the value
range for each of these four ratios, a specific
fault diagnosis is Different faults
identifiable include normal deterioration or

ageing, partial discharge, varying degrees of

made.

overheating, circulating currents in winding,

core and tank, flashover, arcing, partial
discharge with tracking, continuous sparking
etc. However, in some cases, the ratio values
obtained from calculation do not agree with the
codes specified in this method for diagnosis of

various faults.
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indicated that the
ethane/methane ratio does not have close
relationship with the faults [14, 26] and as such,
is excluded from the modified Rogers ratio
method [27].

Later studies have

v.  IEC ratio method

In the IEC ratio method [28], the C2H6/CH4
ratio is excluded just like in the modified Rogers
Ratio method. In specifying codes for
diagnosing a fault, the ranges assigned for the
other three gas ratios are different from that
used in the Rogers ratio method. Fault types
identifiable using the IEC method include
ageing, low energy density partial discharge,
high energy density partial discharge, discharge
of low energy (continuous sparking), discharge
of high energy (arcing), and thermal faults of

varying severity.

vi. Duval triangle method

This is a graphical DGA analysis technique used
to detect fault in a power transformer [29-31]. It
uses only the concentration values of methane,
acetylene and ethylene plotted on all the three
sides of a triangle. This triangle contains seven
fault zones and can be used to identify faults
like partial discharge, discharge of low/high
energy, thermal faults at various temperatures,
and electrical arcing. However, this method may
lead to wrong diagnosis if fault data point lies at
the intersection of fault zones. Also, no region
of the triangle maps to normal ageing condition
in a transformer [32, 33].

Two additional Duval triangle variants—called
Duval Triangle 4 (based on hydrogen, methane,
and ethane), Duval Triangle 5 (based on
methane, ethane, and ethylene) have been
developed to take into account the effect of
hydrogen and lower molecular weight
hydrocarbon gases which the original Duval
triangle method failed to consider [34].

vii. Improved traditional methods

Different authors have tried to refine these
traditional methods to improve their capability
and accuracy. In [26], the overall accuracy of the
IEC and Rogers ratio methods was improved by
using diagnostic results from laboratory tests to
refine the codes for IEC and Rogers methods.
This was then used in building a fault diagnosis
system. Also, an improvement to the Duval
triangle method called the Duval pentagon
method was presented in [35, 36], while a
heptagon graph was presented in [37] to
enhance the diagnostic accuracy. In [38], a three
ratio technique (TRT) in which three diagnostic
ratios formed from combinations of dissolved
gas concentrations was presented. An extended
method which combines the Duval's triangle
and IEC ratio methods was presented in [32] to
take care of difficulties that the Duval triangle
method experiences with fault points located at
the intersection of fault zones. These improved
methods may however be plagued by
generalization difficulties since many of them

are based on isolated case studies [39].

B. Artificial Intelligence Methods

The interpretation of most traditional methods
depends on the level of experience of the
analyst, and the results may sometimes be
unreliable [39]. In order to further enhance
different
techniques

diagnostic ~ accuracy, artificial

(AD)

developed to improve the accuracy of the

intelligence have  been
conventional and graphical methods. This is
achieved by reducing cases of failed diagnosis
due to inconclusive codes in the case of ratio
methods and challenges with diagnosis when
the fault lies at the intersection of fault
boundaries in the case of Duval triangle

methods.
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Al methods include artificial neural networks,
fuzzy logic and support vector machine. In
addition, various evolutionary and swarm
optimization techniques, such as particle swarm
optimization (PSO), genetic algorithm (GA), bat
algorithm etc. have been used to yield improved

performance.

1. Artificial neural networks
ANN-based incipient fault diagnosis models are
trained using gas concentration/ratio data

obtained from power transformers under

varying
training, the main parameters of the network

conditions of operation.

During

model are progressively adjusted until a
mapping is established between the information
on the dissolved gas ratios and the actual fault
present [40].

In [41, 42], an ANN trained using the
Levenberg-Marquardt algorithm was developed
to classify seven transformer incipient fault
types. Three combustible gas ratios were
the IEC ratio method was

deployed in interpreting the fault present. The

calculated and

Levenberg-Marquardt algorithm was selected
because of its fast training time. In [43], a multi-
layer ANN trained using the “trainlm” training
in MATLAB was

fault

utilized in
Fault
interpretation was based on both the key gas

algorithm
transformer prediction.
and Duval triangle methods. Different linear
activation functions were used in the neural
network architecture.

A comparative study of neural networks using
different
diagnostic criteria was presented in [44] while

traditional — approaches as the
[45] integrated the results of different neural
network models for DGA in a smart fault
diagnostic system to improve overall fault
condition monitoring. In [46], probabilistic
neural network models were developed for
dissolved gas analysis based on IEC ratios while

[13] presented a deep learning convolutional
neural network model based on the various gas
ratio methods and their hybrids.

1. Support vector machine
Support Vector Machine (SVM) is employed in

DGA fault
generalizes

power transformer diagnosis

because it excellently to new
knowledge requires minimal control parameters
for its operation and works well with nonlinear
problems [47]. In [48], SVM was used to predict
faults while the k-Nearest
Neighbour method was used to supply missing
values in the DGA dataset. In [49], SVM was

used alongside kNN with Duval triangle as the

transformer

diagnostic criteria. A multilayer SVM classifier

was  developed for  transformer  fault
identification in [50].

It has been reported however that SVMs fail to
perform well when the dataset is complex and

of high dimension [46].

ii.  Fuzzy logic

Using fuzzy logic (FL) techniques in

transformer fault diagnosis [51] involves the
use of a fuzzy inference system (FIS) which
includes a fuzzifier, a fuzzy inference engine and
a defuzzifier. Fuzzification is the process of
converting exact inputs into fuzzy values using
membership functions. Membership functions
represent the degree of membership of an input
value in a fuzzy set. Fuzzification is necessary
because real-world inputs are often vague,
imprecise, or uncertain. By using fuzzy values,
the system can reason about the inputs in a
more flexible and robust manner. The fuzzy
inference engine operates on the fuzzy inputs by
means of the fuzzy rules to determine the extent
of membership of the output in the associated
fuzzy set. Defuzzification converts the fuzzy
output into a crisp exact value by taking into
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account the degree of membership of the
output in the corresponding fuzzy set.

In [51], a FL. diagnostic system for the IEC ratio
was presented, a fuzzy logic system based on
both IEC and Rogers ratio methods was
presented in [52] while in [53], the method
presented is based on a combination of three
traditional methods. Although the fuzzy logic
technique has the advantages of convenience
and intuition, when faced with large data sets,
their classification ability declines sharply [46].

1v.  Hybrid methods

In [406], the probabilistic neural network model
was hybridized with different algorithms such as
modified moth flame optimization algorithm,
particle swarm optimization algorithm, bat
The
optimization algorithms were used to obtain

algorithm  and  genetic  algorithm.
optimal smoothing factor of the PNN to get
improved performance. In [54, 55|, genetic
used to select

algorithm  was appropriate

parameters for the support vector machine
algorithm. A hybrid of SVM with the modified
PSO algorithm with time varying acceleration
coefficient was presented in [56] for improved
fault diagnosis while in [57], an improved krill
herd (IKH) algorithm was used to select
optimal SVM parameters. In the presence of
measurement uncertainties, [58] hybridized the
fuzzy logic technique with the Hybrid Grey
Wolf Optimizer algorithm to reduce the effect
of uncertainties on the diagnostic ability of the
fuzzy logic method. In [59], fuzzy C-means and
quantum-inspired particle swarm optimization
algorithms  were used in selecting the
configuration of a radial basis function neural
network developed for automatic incipient fault

diagnosis.

IV. Conclusion

In dissolved gas analysis, the goal is to correctly
identify which incipient fault generated the
detected gases in the transformer oil. In this
study, different traditional and artificial
intelligence methods used in fault diagnosis
using DGA were discussed. Improvements on
the traditional methods as well as hybrids of Al
methods with various optimization techniques
were also highlighted. A summary of the
advantages and disadvantages of the different
methods is provided in Table 1. This study will
assist in selection of appropriate transformer
fault

practitioners.

diagnosis  techniques by  various
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