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Single and Multiple Placements of Different DG Types On the Power
Distribution System

Oladepo, O., Awofolaju, T.T. and Lasisi, H.O.

Abstract: Integration of distributed generation on power distribution system impacts the network
for improved voltage stability and power quality. However, inaccurate sizing and placement of the
energy sources can worsen the network performance. This paper proposes a hybrid particle swarm
optimization/whale optimization algorithm for the optimal placement of different distribution
generation types on a power network. Standalone metaheuristics are efficient and robust
optimization tools but are mostly challenged with convergence and sub-optimal solutions. The
exploration potential of particle swarm optimization with the selection of higher inertial weight is
annexed with the exploitation phase of the whale optimization algorithm. The proposed technique
is verified on IEEE 33 — bus distribution system. Results show 86.12% and 89.84% improvement
in voltage deviation for Type I and Type III DG injection respectively. Besides, the convergence is
achieved in less than 50 iterations compared to standalone methods.

Keywords: Particle swarm optimization, Whale optimization algorithm, Distributed generation,
Distribution network, Voltage deviation and power loss.

can be embedded in DSs to improve the

L. Introduction system's voltage profiles and power quality. It

Distributed generations (DGs) such as  also provides ancillary services like spinning

photovoltaic and small hydropower are  reserve, reactive power compensation, and

embedded in an electrical distribution system
(DS) to supply power within the vicinity of
The
accomplish power generation are known as
distributed (DER). It
in modern

generation. energy resources to

energy  resources

performs a significant role
electrical power networks. Researchers had
predicted that DG would take a dominant
percentage of all new generations [1]. To
tackle the rapidly increasing energy demand,
integrating  distributed  generators  into
distribution systems has become a more
economical alternative to traditional solutions
such as transmission expansion, network

reconfiguration and substation upgrades. DG
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frequency control [2]. Besides, there is the
ease of rural electrification because power is
generated at the point of use. The economic
benefits are reduction in power transmission,
distribution maintenance, operating cost due
to the decline in line losses, reduction in
health challenges charges due to polluted
environmental conditions, reduction in fuel
cost and distributed power tariff. Ecological
benefits include a decrease in the rate of
emission of dangerous gasses toxic to plants
and animals [3].

Despite benefits, poorly sized DG units and
impropetly operated utility connected energy
sources lead to reverse power flow, excessive
losses, increased network capital and
operating costs, demand-supply imbalance,
the decline in power quality and subsequent
feeder overloads [4,5]. In [6], the most
significant benefit of DG application in DS

depends on the technical selection of the
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optimal site and capacity of DG.

Different researchers have introduced several

methods,  objectives and  constraints.
Techniques used include the classical or
numerical method, as presented in [7,8]. The
analytical approach, as shown by [9-14].
Another technique used is the heuristic
approach, as proposed in the works of [15,10].
Some researchers also used mixed solution
methods involving more than one approach,
as shown by [17,18]. These methods have also
presented different objectives varying from

single to multiple objectives with varying

optimization  constraints. The analytical
method offers the benefit of short
computation time, but as the problem

becomes complex, the assumption for
simplifying the problem may override the
accuracy of the solution [19]. The numerical
method proved effective with a limited
number of busses [20]. Linear programming is
proficient in tackling optimization problems
in DS, such as evaluating the optimal capacity
of DG units [21]. However, it can only apply
to linear objective functions, massive decision

variables and high computation time [20,22].

The
algorithm  solves

development of the metaheuristic
some of the problems
associated with conventional analytical and
numerical methods. However, they still have
significant drawbacks in the inability to
guarantee an optimal solution. A tabu search
optimization algorithm was presented in [23]
for the best placement of DG to minimize the
annual cost of energy and voltage profile. The
results show improvement in the performance
indicator selected. However, it is challenged
with high time-consumption. The genetic
algorithm is also robust in complex problems
and has a higher degree of global optimum
solutions. However, it is challenged by
substantial computation time. To overcome
the shortcomings in metaheuristics, two

significant properties need to be considered:
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exploration and exploitation properties.

Exploration is the ability to extensively
navigate and search the whole problem space
while exploitation determines the algorithm
convergence speed to fit the best solution
[24,25].

algorithms do not possess the ability to

However, most metaheuristic
balance both properties. Hence, the need to

hybridize two  metaheuristics to take
complementary advantages of the combining
algorithms to solve optimization problems
[26,27]. In [28], particle swarm optimization
(PSO) is applied for the sizing and placement
of fuel cells while considering cost, voltage
profile and emission as objective functions.
However, the approach is challenged with the
inability  to
exploitation property. The PSO is sound in its

balance  exploration  and
exploration phase but weak in the exploitation
phase, with premature trapping into the local
minimum. The whale optimization algorithm
(WOA) is robust and can handle a complex
optimization problem. However, it could be
challenged with a low convergence. Therefore,
it can be enhanced by hybridizing it with other
meta-heuristics and adjusting its coefficient
and random vectors in both the exploration
and exploitation phases.

In this study, a hybrid of PSO and WOA
(PSOWOA) is
balance two crucial properties (exploration

algorithms presented  to
and exploitation) to improve convergence and
time. A new optimization technique based on
a hybrid PSO and WOA algorithm for sitting
and sizing distribution generation on the
distribution network is presented for voltage
minimization and power loss reduction. The
paper is structured as follows: Section 1
presents the introduction with the literature
review, Section 2 presents the material and
method, Section 3 presents the results and
discussion. Finally, section 4 presents the

conclusion.
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II. Materials and Method

The optimization programming is coded in
Matlab
visualization. The algorithm is presented as

m-file  for computation and

follows;

A. Particle Swarm Optimization

PSO is a
optimization algorithm that mimics the social

stochastic  population-based

activities of fish or herd of birds. Swarm
behaviour is modelled based on simple
guiding rules using schools of fishes and the
swarm of a bird. Velocity modification for
each agent can be expressed by the following
equations [29]:

Vi =™+ rand, x( pbest; —xj ) +c,rand, x(gbest - ;)

@
Where V,**is agent 7 velocity at iteration &, w
is the weight of maximum and minimum value
(W =09,W;, =0.4), cand ¢, are
acceleration coefficients, rand is a random
number between 0 and 1, Xik and X'; are agent
7 and agent / current position of at iteration £
respectively, pbest is agent 7/ pbest, and
gbest is gbest of the group. The position is
updated

according to the following

expression:
k+1 k k+1
X=Xy,
The weighting function is expressed as:
W=w,_ — Itre (W, — W)/ Itre .,

Where W, and W, are maximum and

minimum  weights,  Itre, and  Itreare

maximum and current iteration respectively.
The movement of the particle is illustrated in
Figure 1.
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Figure 1: Movement of PSO particles
B. Whale Optimization Algorithm
The algorithm's inspiration is from the

hunting pattern of humpback whales and its
model is made up of the following stages:
Encircling prey, bubbling net and search for
prey [30]. Their track to prey (krill and small
fishes) is illustrated in Figure 2.

Figure 2: Bubbling-net tracking behaviour of
humpback whales [30].
The humpback whale recognizes the prey(s3>
location in pray encircling and circles it. The
behaviour is mathematically represented as
follows [31]:

D =[CX *(t)-X (1) @)
X (t+1)= X *(t)- AD ©
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I 1
Where t is the present iteration, A and C are

both coefficient vector, )I(* is the current
position vector of the optimal solution so far,
)I( represent the positional vector, || is the
modulus of the value consisting of elements

product. The position X * is updated at each

iteration when a better value is obtained. The
I |

vectors Aand C are computed as follows:

-4 ©)
©)

D=

I
A=2
I

C=

N
== ==

Where é. decreases lineatrly from 2 to 0 for

. . . . . I
the first iteration to maximum iteration and I
is a randomly selected vector of value [0,1].

The bubble-net prey searching method takes
the exploitation phase of the algorithm and
can be mathematically modelled as shrinking
encircling prey and spiral position updating
models. In the shrinking encircling model, the

mechanism is achieved by the modification of
I

the parameter é. in the coefficient A.
A spiral equation is then developed between
the position of the whale and prey to replicate
the helix-shaped navigation of the humpback
whales as [31]:

)I((t+1):[')'.eb' cos(2xl)+ )I(*(t) ®)

I I I
Where D'=‘X *(t)—X (t)‘ and stands for

the distance between an agent whale to the
prey. b is a constant of the logarithmic spiral
shape, / takes a random number in [-1,1]. The
humpback whales simultaneously navigate the
search space for prey within the shrinking
circle and spiral-shaped route. The concurrent
behaviour is modelled by
probability of 0.5
shrinking encircling and the spiral updating
model. This is mathematically defined as [31]:

assuming a

swings between the
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p<05

I I
r X*(t)- AD if
X(t+1)={r © r !
D' if p>05

©)
Where p denotes the random number in [0,1].
The search for prey takes the exploration
phase of the WOA and vector Ads also

adapted for modification towards reaching the
prey. The model is mathematically outlined as

follows:

D ‘c' X >[<‘ ©6)
= *Nrand —

I | 11 (1 027)

X(t+1)=Xrand AD (11)

Where X, tepresents the random position

vector selected from the population at the

current iteration.

C. Hybrid Particle Swarm
Optimization-Whale Optimization
Algorithm

The hybrid PSOWOA combines the PSO
social swarm tracking and thinking capability
with the WOA locally searching skill. Both
algorithms are initialized at the same time.
PSO is activated in its exploration phase and
catalyzes with high inertial weight to reach its
The
exploitation phase of the WOA finishes up

maximum tracking in the phase.
the tracking initiated by PSO to (gabtain a
global optimum. The problem to solve
consists of two parts. The first is to solve for
the optimal location of DG and secondly the

optimal sizing.
i. Problem Formulation

The objective function considered is to

minimize the power loss and voltage
deviation. The decision variables are the sizing
and location of the DG. The power loss in the

system is calculated and computed as follows:
Ry (sz +Qk2)

(V)

P -

ik _loss

(12)
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Where R, is the line resistance between bus /
and & B, and Q, are the real and reactive

power flow and [”is the terminal voltage. The
objective function is to minimize the voltage
deviation is expressed as:

K
V.

ika — Z(Vref _Vk)

i=1

(13)

Where V,,, is the voltage deviation between

bus 7 and £V, is the reference voltage and

V, is the voltage at bus £ at the receiving end.

The constraints considered are the load
balance constraint, voltage limits, renewable
generation constraints, thermal and other
limits. The power balance equations should be

fulfilled as follows:

nj ' nj

N
P, =P =V ) V..Y.cos(o, -0, —6,.)=0
Gni Dni ; ( ni n nJ) (14)

N
QGni - QDni -V Zvannj cos (5ni - 5nj - anj ) =0
=1

Where " = 12...,"™ P, and Qg the real

and reactive power injected at bus 5 Py and

Qp, ate real and reactive power demand at

bus /

The generator voltage and the load/bus
voltage maintain the same level and in
connection with power flow along the line.
The voltage rise is proportional to the power
flow. Therefore, the increase in power flow
significantly impacts voltage level because the
resistive elements on the DN are higher than
the transmission line. Hence, the voltage has
to be maintained with the statutory limit at

each bus:
VI oV <V e (15)
For the distribution network, the wvalue

adopted for this work ranges from 0.95 to

1.05. V™ is the minimum voltage at bus

and V™ is the maximum voltage at bus 7
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The DG size is inherently limited due to
available energy resources in a given location.
It is significant to maintain the capacity
between the minimum and maximum values.

. 16
Pmln < P < Pmax ( )

Gni — "Gni — ' Gni

Where PI""and P are the minimum poxx(fle%)

and maximum power injected at bus 7

The procedure for implementing the
PSOWOA optimization grid connected DG
system is shown in Algorithm 1.

Algorithm 1. PSOWOA implementation for DG at
static load condition

1. Read: load data, line data of the system and read
renewable metrological data

2. Store: the agent number, MaxCycle and set

matric format for the final solution

Agent population = 100, MaxCycle is the

maximum cycle or iteration (500)

Set: the generator and system constraints

4. Initialization:  population is  randomly
generated:

The decision variables are the location and sizing
of DG.

X, = ((upperbound ~lowerbound ) * rand (1,dim) + lowerbound )

X =( X} XM XD, fori=12...N

&

Where Xidim denotes the position of i#h agent

in the dimth dimension, 7 is the dimension of
space. N is the bus number.

5. Set: zero the counter

6. Calculate: power flow analysis
connected power network

7. Evaluate: objective functions for each search
agent using Equation (12) and (13)

Update: fitness function to determine the best
between the previous objective value and the
present value to obtain the Pbest and Gbest

8. Update: velocity and position using Equation
(1) and (2) from PSO

9. Update: position using Equation (8) and (9)
from WOA

10. Generate: the updated population for the next
iteration

11. Cycle =1

12. Repeat: step 6 to 13

13. Store: the best solution so far

14. Cycle = Cycle + 1

15. Until, Cycle = MaxCycle

for DG
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16. Print: Final solution

Different types of DGs are categorized as
[32], however, for this study, only type I and
type III are considered for analysis and
performance evaluation. The DG types are as
follows:

Type I: Only real power injecting DG,
examples are photovoltaic and fuel cells

Type II: Only reactive power injecting DG, an
example is a synchronous condenser

Type III: Both real and reactive power
injecting DG, an example is synchronous
machines

Type IV: Real power injection DG but
consumes reactive power, an example is an

induction generator in wind generation.

ITI. Results and Discussion

The performance of the proposed hybrid
PSOWOA optimization algorithm is tested on
the standard IEEE 33 — bus distribution
feeder being a commonly proposed feeder in
the literature. Figure 3 shows the thirty-three
bus system. It contains the main feeder, three
laterals and thirty-two branches. The total
loads are 3.72 MW and 2.3MVAr. The
substation voltage is 12.66kV at the base
power of 100MWA [33]. The system data are
referenced as [34]. Table 1 shows the network
performance indicators in terms of voltage
and power loss due to Type I and Type 1II
DG installation.

With one location of DG and hybrid of Type
1 & III on the IEEE 33 — bus feeder, the
optimal capacity and location obtained using
PSOWOA are calculated. The best site for the
installation of the Type 1 DG is bus 6, and its
capacity evaluated is 2551kW.

A decrement in power losses from 243.60kW
to 123.96kW resulted in a 49.14% power loss
reduction. The lowest voltage at bus 18 for
the case without DG increased from 0.9131
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pu. to 0.9686 p.u at bus 7. A comparison of
the proposed technique in terms of voltage
improvement and power loss reduction with
PSO and WOA simulated under the same
condition is shown in Table 2. Moteovet,
Figure 4 shows the effects of one DG and
hybrid PVSHP installation on the feeder.

The Type III DG operates at a 0.8 power
factor to yield a better loss reduction due to
reactive power generation However, Type 1

DG has
improvement. The combination of Type I &

the highest impact in voltage

IIT in hybrid configuration results in a slight
improvement in loss reduction.

The number of DG locations is increased to
two and the effects on the network were
investigated using the proposed PSOWOA
technique. Figure 5 shows the voltage profile
on the IEEE 33-bus distribution system with
the installation of two DGs.

Results show that buses 12 and 30 are the
optimal locations for the Type I DG, with
1000kW and 1044kW as the optimal capacity
respectively. The power losses reduced to
92.10KW with 62.19 percentage reduction and
86.12 percent voltage improvement. With the
integration of Type III DG, DG's sizes atre
1057kVA and 1328kVA, which are installed
and 30
percentage loss reduction is 85.99, with 89.84

on buses 9 respectively. The

corresponding  voltage
shown in Table 3.

improvement,  as

Bw 2

Figure 3: IEEE 33 bus test system based on
hybrid power system
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Table 1: Voltage Magnitude and Power Loss for IEEE 33 — Bus Distribution Feeder for One DG

Location
Ttems Without DG With DG Hybrid
One DG Type 1&III
Type I Type III PVSHP
Total losses (kW) 243.60 123.96 78.94 76.53
Loss reduction (%) 49.11 67.59 68.58
Min. voltage 0.9131 0.9686 0.9720 0.9712
Max. voltage 0.9965 1.0110 1.0217 1.0341
Bus no 6 30 29
Power Factor Unity 0.8 0.6
Size(kW) 2551
Size(kVA) 1888 2046
Feeder voltage deviation (pu) 1.7009 0.1709 0.2526 0.2389
Voltage Improvement. (%) 89.95 85.15 85.95
Table 2: Comparison of the Proposed Method with Other Techniques
DG. Method DG installed Bus % Loss Minimum Maximum % Voltage
Size (kVA/PF) reduction  voltage voltage improvement
Type I PSO 2556/1 6 47.43 0.9622 0.9965 88.19
WOA 2555/1 9 48.25 0.9635 1.0021 86.67
Proposed 2551/1 6 49.11 0.9686 1.0110 89.95
Type 111 PSO 1890/0.8 30 63.94 0.9675 1.0921 83.87
WOA 1883/0.8 31 65.42 0.9646 1.0064 84.20
Proposed 1888/0.8 30 67.59 0.9720 1.0217 85.15
A comparison of the proposed PSOWOA
104 . . .
m
W o algorlt.h with other techniques shf)ws tl'.le
e I v Type 106 proficiency of the proposed algorithm in
s It E:'::-:: .":”Gm 1 terms of voltage improvement and power loss
v
2 ngg reduction, as detailed in Table 4.
§ - The multiple locations on IEEE 33 — bus
- distribution system considers DG of lesser
§W capacities being a medium size network. The

[=
w
~

=
w

6 5 1 15 A B X
Bus Number
Figure 4: IEEE 33 — bus distribution system

voltage magnitude with one DG
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o 1 I th Tyze 1 8.106 |«
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£0%8 7 ""“I
3

z»

S 0% ‘
)

309

)

>

0 5 10 15 20 5 )
Bus Number
Figure 5: IEEE 33 — bus distribution system

voltage magnitude with two DGs

optimal size and location are obtained through
PSOWOA and summarized in Table 5.

The convergence property of the hybrid
technique is illustrated in Figure 6. The figure
establishes the capability of the proposed
hybrid algorithm in yielding efficient results
with improved convergence compare to PSO
and WOA. It is observed that the
convergence in hybrid PSOWOA is achieved
catlier than that of PSO and WOA in less
than 50 iterations
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Table 3: Voltage Magnitude and Power Loss for IEEE 33 - Bus Distribution Feeder for two DG

Locations
Items Without DG~ With DG With hybrid
Two DG system
Type I Type 111 Type I & 111
Total losses (kW) 243.60 92.10 34.14 33.98
Loss reduction (%) 62.19 85.99 86.05
Min. voltage 0.9131 0.9672 0.9729 0.9835
Max. voltage 0.9965 0.9978 0.9982 0.9968
Bus no 12, 30 9,30 12,29
Power Factor Unity 0.8 0.6
Size(kW) 1000, 1044
Size(kVA) 1057, 1328 1046, 1409
Feeder voltage deviation (pu) 1.7009 0.2365 0.1728 0.1554
Voltage Improvement. (%) 86.12 89.84 90.86
Table 4:Comparison of the proposed method with other techniques
DG Method DG installed Bus % Loss Minimum  Maximum % Voltage
Size (kVA/PF) reduction  voltage voltage improvement
Type 1 PSO 1085/1 10 60.19 0.9634 0.9830 85.19
1302/1 29
WOA 1053/1 1231 60.96 0.9689 0.9978 85.74
1025/1
Proposed 1000/1 12 62.19 0.8665 0.9897 86.12
1040/1 30
Type III  PSO 1093/0.8 10 83.67 0.9745 0.9961 88.70
1304/0.8 29
WOA 1090/0.8 10 83.99 0.9757 0.9979 89.10
1078/0.8 30
Proposed 10570.8 9 85.99 0.8665 0.9964 89.84
1328/0.8 30

Table 5: Voltage magnitude and power loss for IEEE 33 — bus distribution feeder for multiple locations

of DG
Items Without DG With DG With hybrid
Multiple DG system

Type 1 Type 111 Type I & 111

Total losses (kW) 243.60 83.04 31.38 20.95

Loss reduction (%0) 65.91 87.12 91.40

Min. voltage 0.9131 0.9739 0.9931 0.9686

Max. voltage 0.9965 0.9986 1.0000 1.0250

Bus no 6,16,12,24, 23,24,30,6, 30,7,24,18,
25,27, 32 106, 7, 31 27,13, 32

Power Factor Unity 0.8 0.6

Size(kVA) 418, 530, 460, 424, 531, 550, 466, 557,
582, 415, 551, 591, 596, 408, 585, 434,
481, 569,495 537 598

Feeder voltage deviation (p.u) 5.361 0.680 0.350 0.190

Voltage Improvement. (%) 87.32 93.47 96.46
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comparison of convergence property

IV. Conclusion

The
distributed
formulated as

grid-connected single and multiple

generation  performance  is
an optimization problem
considering both the equality and inequality
network constraints of the connected systems.
The proposed hybrid PSOWOA for
performance optimization is tested on IEEE
33 - bus systems to confirm its proficient
performance. The results conspicuously
demonstrate the hybrid PSOWOA algorithm's
capability  to
improvement

vield a  better

voltage

and power loss reduction
compared to standalone techniques. The
percentage improvement in voltage deviation
for Type I and Type I1I single DG injection is
89.95 and 85.15 respectively, while 86.12 and
89.84 for the two DG injections. Also, the
convergence in hybrid PSOWOA is achieved
in less than 50 iterations compared to
standalone approaches that converge in more
than 100 iterations. Hence the proposed
hybrid PSOWOA proffers an

solution and shorter convergence time.

effective
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