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Single and Multiple Placements of Different DG Types On the Power 
Distribution System 

Oladepo, O., Awofolaju, T.T. and Lasisi, H.O. 

Abstract: Integration of distributed generation on power distribution system impacts the network 
for improved voltage stability and power quality. However, inaccurate sizing and placement of the 
energy sources can worsen the network performance. This paper proposes a hybrid particle swarm 
optimization/whale optimization algorithm for the optimal placement of different distribution 
generation types on a power network. Standalone metaheuristics are efficient and robust 
optimization tools but are mostly challenged with convergence and sub-optimal solutions. The 
exploration potential of particle swarm optimization with the selection of higher inertial weight is 
annexed with the exploitation phase of the whale optimization algorithm. The proposed technique 
is verified on IEEE 33 – bus distribution system. Results show 86.12% and 89.84% improvement 
in voltage deviation for Type I and Type III DG injection respectively. Besides, the convergence is 
achieved in less than 50 iterations compared to standalone methods. 

Keywords: Particle swarm optimization, Whale optimization algorithm, Distributed generation, 

Distribution network, Voltage deviation and power loss. 

 

I. Introduction 

Distributed generations (DGs) such as 

photovoltaic and small hydropower are 

embedded in an electrical distribution system 

(DS) to supply power within the vicinity of 

generation. The energy resources to 

accomplish power generation are known as 

distributed energy resources (DER). It 

performs a significant role in modern 

electrical power networks. Researchers had 

predicted that DG would take a dominant 

percentage of all new generations [1]. To 

tackle the rapidly increasing energy demand, 

integrating distributed generators into 

distribution systems has become a more 

economical alternative to traditional solutions 

such as transmission expansion, network 

reconfiguration and substation upgrades. DG 

can be embedded in DSs to improve the 

system's voltage profiles and power quality. It 

also provides ancillary services like spinning 

reserve, reactive power compensation, and 

frequency control [2]. Besides, there is the 

ease of rural electrification because power is 

generated at the point of use. The economic 

benefits are reduction in power transmission, 

distribution maintenance, operating cost due 

to the decline in line losses, reduction in 

health challenges charges due to polluted 

environmental conditions, reduction in fuel 

cost and distributed power tariff. Ecological 

benefits include a decrease in the rate of 

emission of dangerous gasses toxic to plants 

and animals [3]. 

Despite benefits, poorly sized DG units and 

improperly operated utility connected energy 

sources lead to reverse power flow, excessive 

losses, increased network capital and 

operating costs, demand-supply imbalance, 

the decline in power quality and subsequent 

feeder overloads [4,5]. In [6], the most 

significant benefit of DG application in DS 

depends on the technical selection of the 

Oladepo, O., Awofolaju, T.T. and Lasisi, H.O. 
(Department of Electrical and Electronic Engineering, 
Osun State University, Osogbo, Osun State, Nigeria)  

Corresponding author: ooladepo@yahoo.com. 

Phone Number: +2347035665642 

Submitted: 01-02-2022 
Accepted: 26-03-2022 

 

DOI: 10.36108/ujees/2202.40.0132



224 

 

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES) 

optimal site and capacity of DG. 

Different researchers have introduced several 

methods, objectives and constraints. 

Techniques used include the classical or 

numerical method, as presented in [7,8]. The 

analytical approach, as shown by [9–14]. 

Another technique used is the heuristic 

approach, as proposed in the works of [15,16]. 

Some researchers also used mixed solution 

methods involving more than one approach, 

as shown by [17,18]. These methods have also 

presented different objectives varying from 

single to multiple objectives with varying 

optimization constraints. The analytical 

method offers the benefit of short 

computation time, but as the problem 

becomes complex, the assumption for 

simplifying the problem may override the 

accuracy of the solution [19]. The numerical 

method proved effective with a limited 

number of busses [20]. Linear programming is 

proficient in tackling optimization problems 

in DS, such as evaluating the optimal capacity 

of DG units [21]. However, it can only apply 

to linear objective functions, massive decision 

variables and high computation time [20,22]. 

The development of the metaheuristic 

algorithm solves some of the problems 

associated with conventional analytical and 

numerical methods. However, they still have 

significant drawbacks in the inability to 

guarantee an optimal solution. A tabu search 

optimization algorithm was presented in [23] 

for the best placement of DG to minimize the 

annual cost of energy and voltage profile. The 

results show improvement in the performance 

indicator selected. However, it is challenged 

with high time-consumption. The genetic 

algorithm is also robust in complex problems 

and has a higher degree of global optimum 

solutions. However, it is challenged by 

substantial computation time. To overcome 

the shortcomings in metaheuristics, two 

significant properties need to be considered: 

exploration and exploitation properties. 

Exploration is the ability to extensively 

navigate and search the whole problem space 

while exploitation determines the algorithm 

convergence speed to fit the best solution 

[24,25]. However, most metaheuristic 

algorithms do not possess the ability to 

balance both properties. Hence, the need to 

hybridize two metaheuristics to take 

complementary advantages of the combining 

algorithms to solve optimization problems 

[26,27]. In [28], particle swarm optimization 

(PSO) is applied for the sizing and placement 

of fuel cells while considering cost, voltage 

profile and emission as objective functions. 

However, the approach is challenged with the 

inability to balance exploration and 

exploitation property. The PSO is sound in its 

exploration phase but weak in the exploitation 

phase, with premature trapping into the local 

minimum. The whale optimization algorithm 

(WOA) is robust and can handle a complex 

optimization problem. However, it could be 

challenged with a low convergence. Therefore, 

it can be enhanced by hybridizing it with other 

meta-heuristics and adjusting its coefficient 

and random vectors in both the exploration 

and exploitation phases. 

In this study, a hybrid of PSO and WOA 

algorithms (PSOWOA) is presented to 

balance two crucial properties (exploration 

and exploitation) to improve convergence and 

time. A new optimization technique based on 

a hybrid PSO and WOA algorithm for sitting 

and sizing distribution generation on the 

distribution network is presented for voltage 

minimization and power loss reduction. The 

paper is structured as follows: Section 1 

presents the introduction with the literature 

review, Section 2 presents the material and 

method, Section 3 presents the results and 

discussion. Finally, section 4 presents the 

conclusion. 
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II. Materials and Method  

The optimization programming is coded in 

Matlab m-file for computation and 

visualization. The algorithm is presented as 

follows; 

A. Particle Swarm Optimization  

PSO is a stochastic population-based 

optimization algorithm that mimics the social 

activities of fish or herd of birds. Swarm 

behaviour is modelled based on simple 

guiding rules using schools of fishes and the 

swarm of a bird. Velocity modification for 

each agent can be expressed by the following 

equations [29]: 

   1 1

1 1 2 2

k k k k

ij ij ij ij ijV wv c rand pbest x c rand gbest x       

 

 

          

(1) 

Where 1k

iV  is agent i velocity at iteration k, w 

is the weight of maximum and minimum value            

( max min0.9, 0.4w w  ), 1c and 2c  are 

acceleration coefficients, rand is a random 

number between 0 and 1, k

ix and 
k

jx are agent 

i and agent j current position of at iteration k 

respectively, ipbest is agent i pbest, and 

gbest is gbest of the group. The position is 

updated according to the following 

expression: 

1 1k k k

i i ix x v  
 

(2) 

The weighting function is expressed as:  

max max min max( )w w Itre w w Itre  
 

(3) 

Where maxw  and minw are maximum and 

minimum weights, maxItre and Itre are 

maximum and current iteration respectively. 

The movement of the particle is illustrated in 

Figure 1.    

Current Velocity

V(t)
V(t+1)

Particle

(Current Position)

gb of Particle

New position of

 particle
pb of Particle

 
Figure 1: Movement of PSO particles 

B. Whale Optimization Algorithm 

The algorithm's inspiration is from the 

hunting pattern of humpback whales and its 

model is made up of the following stages: 

Encircling prey, bubbling net and search for 

prey [30]. Their track to prey (krill and small 

fishes) is illustrated in Figure 2. 

 

Figure 2: Bubbling-net tracking behaviour of 

humpback whales [30]. 

The humpback whale recognizes the prey's 

location in pray encircling and circles it. The 

behaviour is mathematically represented as 

follows [31]: 

   * D CX t X t
rr r r

                                          (4 ) 

(4) 

   1 *  X t X t AD
rr r r

                                     (5) (5) 
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Where t  is the present iteration, A
r

and C
r

are 

both coefficient vector, *X
r

 is the current 

position vector of the optimal solution so far, 

X
r

 represent the positional vector,  is the 

modulus of the value consisting of elements 

product. The position *X
r

 is updated at each 

iteration when a better value is obtained. The 

vectors A
r

and C
r

 are computed as follows: 

2 .A a r a 
r r r r

                                                 (6) (6) 

2.C r
r r

                                                      (7) (7) 

Where a
r

 decreases linearly from 2 to 0 for 

the first iteration to maximum iteration and r
r

 

is a randomly selected vector of value [0,1].  

The bubble-net prey searching method takes 

the exploitation phase of the algorithm and 

can be mathematically modelled as shrinking 

encircling prey and spiral position updating 

models. In the shrinking encircling model, the 

mechanism is achieved by the modification of 

the parameter a
r

 in the coefficient A
r

. 

A spiral equation is then developed between 

the position of the whale and prey to replicate 

the helix-shaped navigation of the humpback 

whales as [31]: 

     *1 ' . cos 2  blX t D e l X t
r r r

               (8) 

(8) 

Where    ' * D X t X t
r r r

 and stands for 

the distance between an agent whale to the 

prey. b is a constant of the logarithmic spiral 

shape, l takes a random number in [-1,1]. The 

humpback whales simultaneously navigate the 

search space for prey within the shrinking 

circle and spiral-shaped route. The concurrent 

behaviour is modelled by assuming a 

probability of 0.5 swings between the 

shrinking encircling and the spiral updating 

model. This is mathematically defined as [31]:  

 
 

   

*

*

. 0.5
1

' .cos 2 0.5

  
  

 
bl

X t A D if p
X t

D e l X t if p

rr r
r

r r

  (9) 

 

(9) 

Where p denotes the random number in [0,1]. 

The search for prey takes the exploration 

phase of the WOA and vector A
r

is also 

adapted for modification towards reaching the 

prey. The model is mathematically outlined as 

follows: 

. randD C X X
rr r r

                                        (10) 

(10) 

 1 .  randX t X A D
rr r r

                               (11) (11) 

Where randX
r

 represents the random position 

vector selected from the population at the 

current iteration. 

C. Hybrid Particle Swarm 

Optimization-Whale Optimization 

Algorithm 

The hybrid PSOWOA combines the PSO 

social swarm tracking and thinking capability 

with the WOA locally searching skill. Both 

algorithms are initialized at the same time. 

PSO is activated in its exploration phase and 

catalyzes with high inertial weight to reach its 

maximum tracking in the phase. The 

exploitation phase of the WOA finishes up 

the tracking initiated by PSO to obtain a 

global optimum. The problem to solve 

consists of two parts. The first is to solve for 

the optimal location of DG and secondly the 

optimal sizing. 

i. Problem Formulation  

The objective function considered is to 

minimize the power loss and voltage 

deviation. The decision variables are the sizing 

and location of the DG. The power loss in the 

system is calculated and computed as follows: 

 
 

2 2

_ 2

ik k k

ik loss

R P Q
P

V




                              (12) 

 

(12) 
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Where ikR  is the line resistance between bus i 

and k, kP  and kQ  are the real and reactive 

power flow and V is the terminal voltage. The 

objective function is to minimize the voltage 

deviation is expressed as: 

 
1

k

ik ref k

i

V V V



                                 (13) 

 

(13) 

Where ikV   is the voltage deviation between 

bus i and k. 
refV  is the reference voltage and 

kV  is the voltage at bus k at the receiving end. 

The constraints considered are the load 

balance constraint, voltage limits, renewable 

generation constraints, thermal and other 

limits. The power balance equations should be 

fulfilled as follows: 

 

 

1

1

cos 0

cos 0

N

Gni Dni nj nj ni nj nj

j

N

Gni Dni nj nj ni nj nj

j

P P V V Y

Q Q V V Y

  

  






     



    






 (14)  

Where in  = 1,2,…, nn   GniP and GniQ the real 

and reactive power injected at bus i, DniP and 

DniQ are real and reactive power demand at 

bus i 

The generator voltage and the load/bus 

voltage maintain the same level and in 

connection with power flow along the line. 

The voltage rise is proportional to the power 

flow. Therefore, the increase in power flow 

significantly impacts voltage level because the 

resistive elements on the DN are higher than 

the transmission line. Hence, the voltage has 

to be maintained with the statutory limit at 

each bus: 

min max

ni ni niV V V 
 

(15) 

For the distribution network, the value 

adopted for this work ranges from 0.95 to 

1.05. min

niV  is the minimum voltage at bus i, 

and max

niV is the maximum voltage at bus i.  

The DG size is inherently limited due to 

available energy resources in a given location. 

It is significant to maintain the capacity 

between the minimum and maximum values. 

min max

Gni Gni GniP P P   
(16) 

Where min

GniP and max

GniP are the minimum power 

and maximum power injected at bus i.  

The procedure for implementing the 

PSOWOA optimization grid connected DG 

system is shown in Algorithm 1. 

Algorithm 1. PSOWOA implementation for DG at 
static load condition 

1. Read: load data, line data of the system and read 
renewable metrological data 

2. Store: the agent number, MaxCycle and set 
matric format for the final solution 
Agent population = 100, MaxCycle is the 
maximum cycle or iteration (500) 

3. Set:  the generator and system constraints 
4. Initialization: population is randomly 

generated: 
The decision variables are the location and sizing 
of DG. 

    1iX upperbound lowerbound .* rand ,dim lowerbound ,  

 1 dim n

i i i iX X ,...X ,...X ,  for i = 1,2…N     

Where dim

iX  denotes the position of ith agent 

in the dimth dimension, n is the dimension of 
space. N is the bus number.    

5. Set: zero the counter        
6. Calculate: power flow analysis for DG 

connected power network  
7. Evaluate: objective functions for each search 

agent using Equation (12) and (13) 
Update: fitness function to determine the best 

between the previous objective value and the 
present value to obtain the Pbest and Gbest           

8. Update: velocity and position using Equation 
(1) and (2) from PSO       

9. Update: position using Equation (8) and (9) 
from WOA         

10. Generate: the updated population for the next 
iteration    

11. Cycle = 1     
12. Repeat: step 6 to 13     
13. Store: the best solution so far      
14. Cycle = Cycle + 1  
15. Until, Cycle = MaxCycle   
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16. Print: Final solution 
 

 

Different types of DGs are categorized as 

[32], however, for this study, only type I and 

type III are considered for analysis and 

performance evaluation. The DG types are as 

follows: 

Type I: Only real power injecting DG, 

examples are photovoltaic and fuel cells  

Type II: Only reactive power injecting DG, an 

example is a synchronous condenser 

Type III: Both real and reactive power 

injecting DG, an example is synchronous 

machines 

Type IV: Real power injection DG but 

consumes reactive power, an example is an 

induction generator in wind generation.  

III. Results and Discussion 

The performance of the proposed hybrid 

PSOWOA optimization algorithm is tested on 

the standard IEEE 33 – bus distribution 

feeder being a commonly proposed feeder in 

the literature. Figure 3 shows the thirty-three 

bus system. It contains the main feeder, three 

laterals and thirty-two branches. The total 

loads are 3.72 MW and 2.3MVAr. The 

substation voltage is 12.66kV at the base 

power of 100MWA [33]. The system data are 

referenced as [34]. Table 1 shows the network 

performance indicators in terms of voltage 

and power loss due to Type I and Type III 

DG installation. 

With one location of  DG and hybrid of  Type 

1 & III on the IEEE 33 – bus feeder, the 

optimal capacity and location obtained using 

PSOWOA are calculated. The best site for the 

installation of  the Type 1 DG is bus 6, and its 

capacity evaluated is 2551kW.   

A decrement in power losses from 243.60kW 

to 123.96kW resulted in a 49.14% power loss 

reduction. The lowest voltage at bus 18 for 

the case without DG increased from 0.9131 

p.u. to 0.9686 p.u at bus 7. A comparison of  

the proposed technique in terms of  voltage 

improvement and power loss reduction with 

PSO and WOA simulated under the same 

condition is shown in Table 2. Moreover, 

Figure 4 shows the effects of  one DG and 

hybrid PVSHP installation on the feeder. 

The Type III DG operates at a 0.8 power 

factor to yield a better loss reduction due to 

reactive power generation However, Type I 

DG has the highest impact in voltage 

improvement. The combination of Type I & 

III in hybrid configuration results in a slight 

improvement in loss reduction. 

The number of DG locations is increased to 

two and the effects on the network were 

investigated using the proposed PSOWOA 

technique. Figure 5 shows the voltage profile 

on the IEEE 33-bus distribution system with 

the installation of two DGs.  

Results show that buses 12 and 30 are the 

optimal locations for the Type I DG, with 

1000kW and 1044kW as the optimal capacity 

respectively. The power losses reduced to 

92.10KW with 62.19 percentage reduction and 

86.12 percent voltage improvement. With the 

integration of Type III DG, DG's sizes are 

1057kVA and 1328kVA, which are installed 

on buses 9 and 30 respectively. The 

percentage loss reduction is 85.99, with 89.84 

corresponding voltage improvement, as 

shown in Table 3.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

19 20 21 22

23 24 25

26 27 28 29 30 31 32 33

18
S

 
Figure 3: IEEE 33 bus test system based on 

hybrid power system
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Table 1: Voltage Magnitude and Power Loss for IEEE 33 – Bus Distribution Feeder for One DG 

Location 

Items Without DG With DG Hybrid 
Type 1&III One DG 

  Type I Type III PVSHP 

Total losses (kW) 243.60 123.96 78.94 76.53 
Loss reduction (%) … 49.11 67.59 68.58 
Min. voltage 0.9131 0.9686 0.9720 0.9712 
Max. voltage 0.9965 1.0110 1.0217 1.0341 
Bus no  6 30 29            
Power Factor  Unity 0.8 0.6 
Size(kW)  2551   
Size(kVA)   1888 2046 
Feeder voltage deviation (pu) 1.7009 0.1709 0.2526 0.2389 
Voltage Improvement. (%)  89.95 85.15 85.95 

Table 2: Comparison of the Proposed Method with Other Techniques 

DG. Method DG installed Bus % Loss 
reduction 

Minimum 
voltage 

Maximum 
voltage 

% Voltage 
improvement Size (kVA/PF) 

Type I PSO 2556/1 6 47.43 0.9622 0.9965 88.19 
 WOA 2555/1 9 48.25 0.9635 1.0021 86.67 

 Proposed 2551/1 6 49.11 0.9686 1.0110 89.95 

Type III PSO 1890/0.8 30 63.94 0.9675 1.0921 83.87 
 WOA 1883/0.8 31 65.42 0.9646 1.0064 84.20 

 Proposed 1888/0.8 30 67.59 0.9720 1.0217 85.15 

A comparison of the proposed PSOWOA 

algorithm with other techniques shows the 

proficiency of the proposed algorithm in 

terms of voltage improvement and power loss 

reduction, as detailed in Table 4.  

The multiple locations on IEEE 33 – bus 

distribution system considers DG of lesser 

capacities being a medium size network. The 

optimal size and location are obtained through 

PSOWOA and summarized in Table 5.  

The convergence property of the hybrid 

technique is illustrated in Figure 6. The figure 

establishes the capability of the proposed 

hybrid algorithm in yielding efficient results 

with improved convergence compare to PSO 

and WOA. It is observed that the 

convergence in hybrid PSOWOA is achieved 

earlier than that of PSO and WOA in less 

than 50 iterations 

 

 

.  

 
Figure 4: IEEE 33 – bus distribution system 

voltage magnitude with one DG 

 
Figure 5: IEEE 33 – bus distribution system 

voltage magnitude with two DGs 
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Table 3: Voltage Magnitude and Power Loss for IEEE 33 - Bus Distribution Feeder for two DG 

Locations  

Items Without DG With DG With hybrid 
system Two DG 

Type I Type III Type I & III 

Total losses (kW) 243.60 92.10 34.14 33.98 
Loss reduction (%) … 62.19 85.99 86.05 
Min. voltage 0.9131 0.9672 0.9729 0.9835 
Max. voltage 0.9965 0.9978 0.9982 0.9968 

Bus no  12, 30 9, 30 12, 29 

Power Factor  Unity 0.8 0.6 

Size(kW)  1000, 1044   

Size(kVA)   1057, 1328 1046, 1409 

Feeder voltage deviation (pu) 1.7009 0.2365 0.1728 0.1554 

Voltage Improvement. (%)  86.12 89.84 90.86 

 

Table 4:Comparison of the proposed method with other techniques 

DG Method DG installed Bus % Loss 
reduction 

Minimum 
voltage 

Maximum 
voltage 

% Voltage 
improvement Size (kVA/PF) 

Type 1 PSO 1085/1 
1302/1 

10 
29 

60.19 0.9634 0.9830 85.19 

 WOA 1053/1 
1025/1 

12 31 60.96 0.9689 0.9978 85.74 

 Proposed 1000/1 
1040/1 

12 
30 

62.19 0.8665 0.9897 86.12 

Type III PSO 1093/0.8 
1304/0.8 

10 
29 

83.67 0.9745 0.9961 88.70 

 WOA 1090/0.8 
1078/0.8 

10 
30 

83.99 0.9757 0.9979 89.10 

 Proposed 10570.8 
1328/0.8 

9 
30 

85.99 0.8665 0.9964 89.84 

Table 5: Voltage magnitude and power loss for IEEE 33 – bus distribution feeder for multiple locations 

of DG 

Items Without DG With DG With hybrid 
system Multiple DG 

Type I Type III Type I & III 

Total losses (kW) 243.60 83.04 31.38 20.95 
Loss reduction (%) … 65.91 87.12 91.40 
Min. voltage 0.9131 0.9739 0.9931 0.9686 
Max. voltage 0.9965 0.9986 1.0000 1.0250 

Bus no  6, 16, 12, 24, 
25, 27, 32 

23, 24, 30, 6, 
16, 7, 31  

30, 7, 24, 18, 
27, 13, 32          

Power Factor  Unity 0.8 0.6 

Size(kVA)  418, 530, 
582, 415, 
481, 569, 495 

460, 424, 531, 
551, 591, 596, 
537 

550, 466, 557, 
408, 585, 434, 
598 

Feeder voltage deviation (p.u) 5.361 0.680 0.350 0.190 

Voltage Improvement. (%)  87.32 93.47 96.46 
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Figure 6: IEEE 33 – bus distribution system 

comparison of convergence property 

IV. Conclusion 

The grid-connected single and multiple 

distributed generation performance is 

formulated as an optimization problem 

considering both the equality and inequality 

network constraints of the connected systems. 

The proposed hybrid PSOWOA for 

performance optimization is tested on IEEE 

33 - bus systems to confirm its proficient 

performance. The results conspicuously 

demonstrate the hybrid PSOWOA algorithm's  

capability to yield a better voltage 

improvement and power loss reduction 

compared to standalone techniques. The 

percentage improvement in voltage deviation 

for Type I and Type III single DG injection is 

89.95 and 85.15 respectively, while 86.12 and 

89.84 for the two DG injections. Also, the 

convergence in hybrid PSOWOA is achieved 

in less than 50 iterations compared to 

standalone approaches that converge in more 

than 100 iterations. Hence the proposed 

hybrid PSOWOA proffers an effective 

solution and shorter convergence time. 
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