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An Approximate Solution of Fractional Order Epidemic Model of Typhoid
using the Homotopy Perturbation Method
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Kolawole, M. K., Popoola, A. O., Odeyemi, K. A. and Bashiru, K. A.

Abstract: The epidemic model of typhoid is considered to be a control strategy for the undeviating
transference of infectious disease. Due to its high accuracy and efficiency in solving nonlinear
differential equations, the homotopy perturbation method is coupled with the Riemann-Liouville
fractional integral operator | of order 77 € (0,1) to obtain the approximate analytical solution of the
epidemiology model presented at different level of 7. The obtained results were subjected to
simulation process where the effect of the causative bacterial in the medium was studied at various
level ofn. The entirety of the computational procedures was conducted utilizing Maple 18, and
graphical representations and tabular data were exhibited to facilitate a lucid understanding of the
simulation outcomes. These findings indicate that curtailing Salmonella contamination is of
paramount importance for minimizing the hazard of sickness and infection. This can be achieved
through the observance of meticulous hygiene, which includes consistent hand washing with soap
and water, thorough cooking of food, and appropriate storage and handling of edibles.

Keywords: Typhoid fever, Fractional differential equation, Homotopy perturbation method,

Simulation.

I. Introduction
The

value in

of how infectious diseases spread |[2].
threshold

Mathematical models have been an optimal

control strategy for several diseases in the last ~commonly  used

few decades [1]. Models are being increasingly
used to elucidate the transmission of several
diseases. These models, wusually based on
compartmentalized models, may be rather
simple, but studying them is crucial for gaining

important knowledge of the underlying aspects
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epidemiology is probably the basic reproduction
number [3, 4]|. The basic reproduction number,
denoted by, is defined as the average number of
secondary infections that occur when one
infectious agent is introduced into a completely
susceptible population. This threshold is a
famous result due to the author [5] and is
referred to as the "threshold phenomenon",
giving a borderline between persistence and
disease death. It is also called the
reproduction ratio or basic reproductive rate [6-
applied

mathematical methods, such as the homotopy

basic

8].  Researchers  have various
perturbation and variational iteration described

in [9-11], to solve epidemiology problems.


mailto:mutairu.kolawole@uniosun.edu.ng

Lately, fractional calculus has been an area of
interest to many researchers. Several models are
now formulated with coupled fractional
differential equations because it produces a
greater degree of freedom for the independent
variables without violating the constraints
imposed on it and on the analysis and numerical
simulation of the SEIR epidemic model of
with time fractional

measles non-integer

derivatives  using  the  Laplace-Adomian
decomposition method [12]. The most common
class of epidemiological mathematical models is
the compartmental model. One of the popular
compartmental approaches assumes that a
susceptible individual first goes through a latent
period (and is said to become exposed or in
class E) after being infected and then recovers,
in an approach known as the SEIR model. The
SEIR model has been used to study two other
coronavirus epidemics (SARS and MERS) since
2003 [13]. The modified homotopy perturbation
method and its application to analytical solitons
of the fractional-order Korteweg—de Vries
equation were computed by [14]. The integer
order model was adopted from [15], who
researched on a mathematical model for control
of measles epidemiology. A conceptual analysis
of the combined effects of vaccination,
therapeutic actions, and human submission to
physical constraint in reducing the prevalence of
COVID-19 using the homotopy perturbation

method was studied by [16]. The existence of
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solutions to differential equations of fractional
order was presented by [17]. In their research,
they applied the Adomian decomposition
method to obtain the result of the fractional
order problem. The problem was converted to
integer order to obtain the integer order result.
The results obtained in the two cases were
compared, and it was obvious that they were in
good agreement. They concluded that the
Adomian decomposition is an efficient and
reliable method to solve linear problems. In this
research, the mathematical model of typhoid
fever described by [18] was adopted and
modified to be of fractional order to study the
dynamics of the disease transmission using a
Caputo derivative. The existing model equation

is presented in Eq. 1.

Zf: A+R()-(u+2)S(t)

dc
=P (o0 g

d
dl: (L-p)AS(H)+ (1)~ (0y + f+u+ )1 () 1)

aRr
. PIB)+9C(0)- (u+R()

B.v
k+B

C

Where A =

In the presented model, the susceptible class is
denoted by S, the carrier class by C, the infected
class by I, the recovery class is represented by R,
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and the bacterial population is denoted by Q. 4
represents the infection force, v is the rate of

salmonella bacteria, and K denotes the

concentration of the bacteria in sustenance.

II. Materials and Methods
A. Preliminaries and Methods

Some fundamental definitions and properties in
fractional calculus are given in this section.
Definition: According to [16], a real function
o), t>0, is to be in the

said space

C u1 ME R if there exist a real number
that
o(t) =t" ¢, (t). where g, (t) € C(0,00), and it is

M > u such

said to be in the space C",if and only if

(m
p" eC,neN.

Definition:The

integration of order 7 >0 of a positive real

Riemann-Liouville fractional

function @(t) eC Y >-1t>0 is defined as
Eq. (2) [16]

1t _
1Tty = —— [ (t - X)L p(x)dx )
I'(n7)0

Such that 1P (1) = @ (t).

The following properties hold for fractional
integral operator

|’7for(p(t)eC#,y2—l n,a>0and f>-1:

1. 1 %p) = 1% (),
2. 1T1%p(t) = 1218 o),
r(p+1)
I'(n+p+1)

3. 1MP - LAy
Definition: The Caputo fractional derivative of

a positive real function ¢(t)given as Dngo(t) 1s
given by Eq. (3) [10]

100

t
1t-0"7 L™ (ax @3

D7 (t) =
o(t) T b

n
For n—-1<n<n,neN, t>0,(pec_l.

The following property holds for fractional
integration of the Caputo fractional derivative.

n
For n—-1<#n<n, neN, @ec_l,,uz—l.

Then
k

n-1
1D (1) = p(t) - k§0¢(k) (0) (4)

t
k!

B. Model Modification

Here, the dynamics of the model is modified to

be of fractional order as fractional order

derivatives give rise to greater degree of
freedom and also display a realistic behavior of
the effect of each parameter in the model. Thus,
the modified model is presented as Eq. (5)

D"S(t) = A+ R(t) - (u+ 1)S(t)
D"C(t) = pAS(t) - (0, + 0+  + $)C(1)
D™1(t) = (1- p)AS(t) + C(M) - (0, + S+ u+a) ()} (5)
DPR(t) = AI(t) +4C(t) - (u + 0)R(Y)
D™Q(t) = a,C(t) + o, (t) - 14,Q(1)

Subject to the following initial conditions

5(0) = 59,C(0) = Gy, 1(0) =i, R(O) = 15, Q(0) =

Where A= Qv .
k+Q
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C. The Modified Homotopy Perturbation
Method

To extend the theory of HPM to Eq. (5),

consider a coupled fractional differential

equation of order 17 defined as Eq. (6)

Si(ﬂi)

() =(t,51,S5,S3,--Sp)  ieN (6)

A homotopy can be constructed for Eq. (6)
such that

si(ni)(t) =P(e(t. 51,57, 53.++Sp)) TeN 0

Where
at p=0, Eq. (7) becomes linear such that the

pe(01) is an embedding parameter,

following Eq. (8) is obtained:
5. -0 ©)

At p=1 the original equation in Eq. (6) is
obtained. A
parameter P is assumed for Eq. (6) such that:

series  solution

embedding

Si(ﬂi)

(t) = P(e(t,S1,55.53,-Sp)) 1 €N(9)

Where
at p=0,Eq. (7) becomes linear such that Eq.
(10) is obtained:

pe(01) is an embedding parameter,

s =0 (10)

At p=1],
obtained. Let
embedding the parameter P for Eq. (6) such

the original equation in (0)

assume a solution series

that
Si (1) = Sin + PSiq + P2Siny,--- (11)
i io * PSjp + P Sjo.

Substituting Eq. (9) into Eq. (6) and comparing
the coefficients of equal powers of P,the

following series of equations are obtained as Eq.
(12) and so on.
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Pios 0=0

])11 3.1(: 0= @(”1:* e S ?:) (12)
P 310* O 80 8080 808808 50)- i
v 5 ’ [f) gﬁ‘(f Sededie eSS ;1*311*311*331*"5.-11)*

In turn, these series of equation in (10) can be

Riemann-Liouville
|7 which is the
inverse of D7as stated in (4) to obtain the
values of S(t),S;,(t),S;5(t)...
of (6) is obtained by adding S, (t),s;,(t),S;5(t)...

which is a truncated series is of

solved by applying the

fractional integral operator

.Thus, the solution

N-1
Sin (0 = = sjp . @@3)

D. Application of the modified homotopy
perturbation method

In this section the procedure from (6-11) will be
extended to the modified model to obtain the
approximate analytical solutions of the model

compartments. Thus, constructing a homotopy
for (5),

D"15(t) = p(A-+ () - (u+ S()

D"2C(t) = P(pAS (1) - oy + 0+ 1+ H1CL0)
DU?’I () =P(((L- p)AS(t) + &C(t) - (0'2 +B+u+a)lt); (14)
D"3R(1) = P(A (1) + 4C) - (u+ )RV

D"1Q(t) = P(5yC)+ 7,1 (1)~ 4,Q(0)

Let the series solution embedding a parameter p
for each compartment of the mode be
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S(1) = 5o + sy (©) + pZsy (O) + -
C(t) = co(®) + pey (1) + pZey () +--
1(t) = ig () + Piy (0 + pZin (©) +--- (15)
R(t) = 1 (©) + pry () + p2ry (1) +---

Q(t) = qp (t) + pay (t) + pzqz(t) oer

Substituting (13) into (12) and comparing equal
powers of P from both sides,

Coefficients of pois obtained as follows:

p’:  Dig(1)=0, D"2cy())=0, D'3iy(1) =0,

D4 1) =0, D"5q0(t) =0, (16)

o DM 0= e~ (as Dsyl)
D'2¢,(0)= pisy0)- oy +0+ 1+ igl)

D"31)= 1~ sy )+ &yl0)- o+ s+ gl (17)
D3R, = iy )+ o) - (D) 0

D10y = g )+ o5 ) 30 )

o2 DIsy(0= A dy()-(us Ayl

D26y (1)= piy 1)~ (oy +0+ A0

D31,(0) = (1- p)is 0+ B, (0 (o + B+ w4 )y () (18)
D3R, (1) = Ay )+ 6,0 (u+ )5 0

010, )= 16y 1)+ 7y ),y )

Applying the integral operator 1”7 to (14) at the
given initial condition,

sp)=5g, o) =cp, ig® =iy, ) =15, Gy)=05 (19
Repeating the process for (15);
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sl(t) =(A+ 6r0 —(u+ /1)50) oD

10 = (0l oy + 0+ eg) - —

t (20)
T(n+1)

il(t) = ((1—p)lso +6eg - (02 +ﬂ+y+a)i0)
n
T'(n+1)

t7

t) = (0.Cn +0oin — _
ql() (10 2y ﬂbqo)l"(n+1)

n(t) = (Big +dey — (u+0)1p)

Also doing the same for (16) yields the
compartmental results of the second iteration.
Such that

2n

t
(1)=((5€CO+§/3i0—52r0—25/1r0—y/\+u250+2;MSO—AA—A& 1)

S
2 00 Mgy

+201pt0+2016t0+012c0+ s meo-zpmo- o
)

t
D_WSG)M @)

ey . «
(e 25 d 20l +15.41 -0 & - Js 0.5 +a + Ak +1
s - -af_-pl -als +fpis +20 fi -
ﬂoﬂzo”’doaop 0”’2”‘%;’02”0 022/ﬂ0 g
ke ots <t -8 +0 1 edh v g s -l +E) (B
pb]*“o iy By 0 Ty T BT A Ty i) )
{

I(2+])

) Yo ,
0)=(-0k_+Gpls -2utt -0 -a & - -aff_-2ufi - fpls -
r2() (€¢60+€p$0 WCO f)cO 010 ﬂl0+/23A80 aﬂlo /Jﬂlo ﬂpso ozlﬂo
1
Y N
e -0tk -8R +6°r +20 +p°71 )—— U
oy A W)

Cz(t):(201¢00—01p/50

+y200+2y6t0+2€¢co—9p)50+€20

Y

) o

t)=-(o & - & +0C -0./8 i i 7y

b)=-loy oy oty oo oy 2"2 RN
]

) | 2
i -0 ft [ C -4 )— 5
0 R A Oy &)

The approximate solutions of each class are
obtained by adding the three iterative solutions.
Such that:
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sm = 3 s, ®,

C(t)_% ch ®,

=S i, ¢ 26)
R(t) — _g ) (O,

Q) — é Aap (O

P

The following values are suggested as initial
population parameter for the classes of the
epidemic model
$(0) =500, C(0) = 400, 1(0) =300, R(0) =350, Q(0) =100
all other parameters are adopted from [15]. The
approximate results in equation (19-23) are
evaluated using the prescribed parameters and
the following results are consequently obtained:

87.9574000"  2.181581239t2"

S(t) =500+

r(n+1) r(27+1)
(-89.9973- 4000t (20.24986747+l79.997301+400012)t2'7
C(t)=400+ -
I(+1) (2 +1)
183.6037000t"”7 (143.3342194 - 80.00—1)t277
I(t) = 300 -
r(n+1) (27 +1)
(8.241400)t"7  (143.3342194-80.00. 2
, . 00y
R(t) = 350 — -
F(n + 1) F(Zr] + 1)
III. Results and Discussion

The analysis of the effect of o; which is the

typhoid causative bacteria in the model was
by the
interval0.3< 0, <0.9at0<7 <1.  Graphical

carried  out varying it on

interpretations of the results obtained are
presented to give a better exposition of its

effects in the medium.

Carrier Class
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Recovered Class
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The presented graphs in Figures 1-4 and Figures
5-8 reveals that the population of the carrier and
infected compartments decrease drastically over

time as o; increases from 0 to 0.9. It is obvious

that the impact of o; in the classes is dependent

on 7. Although the population of the cartier
and infected classes reduces as o) increases, it
was discovered that the decrement rate becomes
lower as 77 decreases from1to 0.25. In the
recovery class, due to the influence of
parameters such as vaccination and immunity,
there is an increment in the population of the
class. It was seen that more people tend to be

recovered as 0, decreases from 0.9 to 0.3.

A. Conclusions
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The objective of this study was to use the
homotopy perturbation method to obtain a
numerical solution for a fractional-order
typhoid model. This method proved to be
highly effective in generating accurate results for
the model. The numerical output was then
simulated to investigate the impact of typhoid-
causing bacteria in the surrounding medium.

The

analyzed to uncover the experimental findings.

accompanying graphs were carefully
However, the study acknowledges that further
research is needed to address the widespread
prevalence of this epidemic and to develop
appropriate measures for its eradication and
control. Sensitization measures can play a
crucial role in this regard by raising awareness
and promoting preventive measures to curb the

spread of typhoid.
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