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Conceptual Investigation of the Disease Transmission Coefficient in Seir
Epidemic Model Using Laplace Adomian Decomposition Method (LADM)

Kolawole, M.K., Alaje, A.L., Popoola, A.O. and Bashiru, K.A.

Abstract: In this paper, the impact of disease transmission coefficient on a SEIR epidemic model
using Laplace Adomian Decomposition Method (LADM) towards disease eradication is presented.
Numerical Simulations which show the effect of transmission coefficient are shown with the use of
Maple 18 and the results discussed extensively. The simulation results show that disease

transmission coefficient plays vital role in disease eradication.
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I. Introduction

Computation and approximation techniques

such as the wvariational iteration method
proposed by [1] have been used by several
researchers to obtain the solution of different
This
successfully applied by [2] to replicate the

mathematical models. method was

effect of saturation term on a coupled SEIRS

epidemic model. The Laplace Adomian
decomposition method (LADM) is another
good approximation technique that was

applied by [3] to carry out the analysis and
simulation on a mathematical model of
measles. The vatiational iteration method was
applied by [4] on a Susceptible Exposed
Infected Recovered epidemic model having a
saturated incidence rate to simulate the effect
of saturation term in it.

[5] Applied the LADM on a fractional order
model of smoking to obtain its approximate
solution. An investigation of the effect of
disease transmission coefficient in a SEIR

model was carried out in 2019 by [6]. The
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Homotopy Analysis Method (HAM) was used
to provide an accurate result of a tuberculosis
model by [10] the computation software
Maple 15 was used to do the computational
works on the SEIR model and their result
signifies the efficiency of the (HAM) in
differential
equations. In this paper, the impact of the

solving  non-linear  coupled

disease  transmission  coefficient in a
deterministic SEIR epidemic model adopted
from the research of [6] is investigated by
applying the LADM. The coupled ordinary
differential equation that illustrates the model

is presented as equation 1:

< . FSMmIE B
SO =A 1+ m,S(t) + m,l(t) #5(1)
- pSmIM

EO =T s rma  HTHEWD
1(t) = sE() — (7 + 22)1 (V) @

R(t) = 7 (1) — (22 + SYR()

For easy application of the LADM on the
1

1+mS(t) +m,l(t)
is denoted by A such that we have

model, the incidence rate
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S(t) = A— (B ()4 + 1)S(t) 3

E(t) = A1 ()4 - (u+£)E(1) 2)

(1) = £(t) - (7 + 1)1 (1)
R(t) = A (1) — (+ S)R(E)

Subject to the following initial conditions
S(0)=s,,E(0)=¢,1(0)=i,,R(0)=r,

Parameters and Descriptions

The
recovered compartments are denoted with S-
E-I-R

coefficient of disease transmission, g and &

susceptible, exposed, infected and

respectively. #  Stands  for the

respectively represent the mortality and

recuperation rate, J represents the rate of
losing immunity, the incident rate is denoted
by Aand the birth rate A represents the total

population of the model.

II. Materials and Methods

A. Laplace Adomian Decomposition
Method
In this section, iterative solution of the

described model is obtained by using the
(LADM) introduced by [7]. An application of
this method was extended by [8] to obtain the
solution of IVP. This method was also applied
to solve an HIV infection model by [9]. Here,
some applicable definitions applicable in the
model are defined.

Definitions:

Let y(t) be a function continuous for all

positive real numbert > 0. The Laplace

Transform of the function is

y(s) = [e ()t

For a differentiable function @(t) of order Q

the Laplace transform is

0] {f

given by

Uy (t)]-7"(0) }
722y (0) - 2%y (0) -

243

The Laplace transform inverse of

r(s) .
S
t
76 _ [r@at
S 0
B. Application

To apply the technique mentioned, we start by

taking the Laplace operator of each sides of

©)

[

S (t)} = ([A] = BALSO1 ()] - [S(1)]

N

E(t)} = pMISOITMO] - (u+&)IE()]

S

| (t)} = &l[E(®)] = (v + )1 (D] ©)

N

f«o}=wnan—uaRan

Following definition (ii) which is the inverse
of Laplace transform, equation (4) is obtained:

m[S(t)]-S(0) = % = PAISOI (O] 1S (1)]

m[EM]-EQ) = SAASOIO]-(u+e)MEO]  (4)
A[1()]-1(0) = /[EM]- (7 + )1 (V)]
A[ROI-R(O) = y[1]- [R(®)]

Simplifying equation (4) by appropriately
substituting the initial conditions and dividing
both sides by 77, (5) is obtained

aam=i A MWNUM]”HWH
MEM)]=2 ﬂ%mmum W*”aam
D12+ O] V*”amﬂ ©)

amm:ﬂ+1aum—ﬁamm
T T T
Or
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z[S(t)]=S;°+%—%ﬂ[w(t)]—§é[sa)]

E[E(t)]=e—°+ﬁz[w(t>]—wf[at)]

M=+ 2 En]- 4 +“’z[I(t)] (6)

f[R(t)]— +L e[I(t)] ”f[R(t)]

where @(t) = S(t)I(t) represent the nonlinear

term. The solution of each compartment of
(6) which has a nonlinear term is represented

as an infinite series given by (7)

S =50, EM) =3 E .
@
1) =2 1®, RO =2 R(®)

The infinite series of the nonlinear term is

WD) = > w, ©.
(8)

The first four Adomian polynomial of the

nonlinear term @, (t) is given by;

@, = Syl

@, = S,l, +S,1,

w, =S,1,+S, 1, +S,1,
w; = S,l,+S, 1, +S 1, +S,l,

C))

w, =S,1,+S;1, +S,1,+S,1;, +S5,1,

Substituting (7) and (8) into (6), the following
equations are obtained

244

Rs01-2+ 52y -2 (3500
YE0)-2 “az i)

i;[] T T i m|= (10)
ORI R
MYRO) °+Q[Zli(t)1—;’€[za(t)1

The iterative terms obtained by matching the
two sides of (10) are:

Susceptible compartment:

o (1] = 2+ ﬂi

oS, ()] = —%z[wo (]~ £ £[S, (D]

LA

S, (O] = — 2= o (D]~ fetsl(t)]

5/1

0[S0 (]= 25 e, ()] — %etsn ')

Exposed compartment:

IE, )] =2
T

E, )] = 22 oy 01— L) o1E, (1))
T T

E, 0] = 2% tfeo, )1 L9 e (1]
T T

E, ., ()] = % e (t)]— (“—;‘%[En ®]

Infected compartment:

Mo (t)] = o

T
aL®1= < ([, (t)]—@eno(t)]
E

e @1— 4 o]
7T 7T

(] =—

s ®]= £ E,®] —%E[ln ®]

Recovered compartment
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IR, (1)] = r;

[R,(D)] = %eno(t)] — gz[Ro 3]

AR, (0] =Z ([, (0] - = (R.(D]

R, (D]=Z¢[1,(1)]— £ [R, (D]
7T 7T
Following definition (ii) the inverse transform

of the Laplace operator was applied to each

classes of the model and the initial

approximation of each class is obtained as
S, () = s, + AL,
Eo (t) = e,

Io(t) — io’
Ro(t) = Io -

(11)

The first approximation is similarly obtained
2

S, () = (8, + BAS i)t — (A + ﬂ/iAio)%
as: By (t) = (—egy + BAsgly — 18, )t + (ﬁ/iAio)g 12)

1, (t) = (e&) — Ty — ot

Ri(t) = (i — ot

The second approximation is obtained as
(2, + Ay
+ A5, + BA/SOiOy)g
L (ASNI Ay
3

—2APAe,e + 1’ A+ 24 BAiyy) %

S,(t)

245

(_}bzﬁzsoio2 = ABoloy + A€y
—3A Byl — E°0y + 16y + 2 ek,

Ez(t)=—g/wioso)t22+(—zz S A —4aphigu [ 13

3
_24pNiy - AfiAs+ Zeeo/lﬁA)%

— &%y + Ay, + 2 gy — 2 1uc8,
3

L,O= . t? N
+igp” — yeey + 'o7/2)5+ (‘CjﬂloA)E

: . t?
R, (t) = (2yee, — gy —2iyy° + 2y2r0)2}

The third approximations of each of the

compartments are obtained using the

following algorithm.

S[3](t):=collect(expand(inttrans[:invlaplace](((-
lambda*beta/alpha)*inttrans|:-
laplace]((S[2](t)*Iota[0] (t)+Iota[1](t)*S[1] () +S[|
0](v*Iota[2](t)),t,alpha)-(mu/alpha)*inttrans|:-
laplace](S[2](t),t,alpha)),alpha,t)),t);

E[3](t):=collect(expand(inttrans|:-
invlaplace](((lambda*beta/alpha)*inttrans|:-
laplace]((S[2](t)*Iota|0](t)+1ota[1](H)*S[1](t)+5]
0](t*Lota[2](t)),t,alpha)-
((mu+epsilon)/alpha)*inttrans|:-
laplace](E[2](t),t,alpha)),alpha,t)),t);

I[3](t):=collect(expand(inttrans]:-
invlaplace](((epsilon/alpha)*inttrans|:-
laplace](E[2](t),t,alpha)-
((mu+gamma)/alpha)*inttrans|:-
laplace](Iota|2](t),t,alpha)),alpha,t)),t);

R[3](t):=inttrans|:-
invlaplace](((gamma/alpha)*inttrans|:-
laplace](Iota|2](t),t,alpha)-
(mu/alpha)*inttrans|:-
laplace](R[2](t),t,alpha)),alpha,t);

Such that the approximate results of each of
the class is
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S = 35,0 =So() + 5, + 5, + 5,(0),
B = E () = E, 0+ E,0)+ E, () + E,(0),
1O = 1O =10+ LO+LO+ 1,0, 04
R = 3R, (0) = Ry () + R (0) + R, (1) + Ry 1)
Maple 18 is employed for the evaluation of

obtained in (14) and
respective parametric values presented below:

the results their

Following the evaluation, the results obtained
for each class are accordingly presented

Table 1: Results Evaluation and Their Respective
Parametric Values

Parameter Value Source
S0 13 Assumed
io 8 Assumed
€o 11 Assumed
to 9 Assumed
€ 0.25 [4]

0.3 [4]

0.1 [4]
A 0.16 Estimated
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13+ (37.1-16.648)t

+(~5.5650000@ - 20.780000® 3
+10.649600@42)t’ + (-5.5650000®
+5.80473337 8 +5.959680003°

— 454382933 8°)t° + (0.046125M000
~0.317750007 - 7.85450666 3
+3.58263466 5°)t* — 2.86890666 Bt°.

S(t) =

11+ (6.05-16.648)t
+(1.663750M0+18.700000® 3
—10.649600® 5)t?

E(t) = +(-0.30502@333-7.1550666@ 4
+5.0722133D 5% — 4.5438293B3°)t°
+(0.372416675 -8.5542400B37
+3.5826346@ 3°)t* —2.8689066& £°t°

8-0.45t+ (~0.66625000® + 2.0800000® H)t*
+(0.227479%667+1.2810000@ 5

1(t) =
® ~0.8874666674)t° +
(0.744833B374 - 0.6997333B34%)t"
9-1.9t + (0.262500M00)t?
+(-0.04845833333
R(t) =

+0.0693333B33/)t>
+(0.054666656673)t*

II1. Results and Discussion

The simulation process is carried out with the
aild of Maplel8 software and the impact of
transmission

disease coefficient ~ fis

investigated in each class of the epidemic
model at an interval of0< f <1. The results

of the computer simulation are presented
graphically for effective exposition
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Figure 3:- Results at f#=0.5

5y zll.iu 28,6'0 =] Lr“ 29.1:20.25,
u=03y=01,4=0.16

Figure 4:- Results at fF=0.75

s, =13, =8.¢,=1Lr, =9£=025
u=03y=014A=0.16
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Figure 5:- Results at ff =1
5o =13,i, =8,¢,=1Lr, =9,£6 =025,
p#=03,y=0.1,1=0.16
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The outcome of the simulation process on the
epidemic model presented in figure 1-5 reveals
that the disease transmission coefficient plays
a significant role in disease eradication. From
figure 1, when the coefficient of the disease
transmission is 0 the population of the
susceptible class is at its peak as the infection
rate between humans and vectors is zero.
Figure 2 reveals an increase in the population
of the exposed class as level of S progresses
from 0 to 0.25. From figures 3 to 5 as the

level of fincreases from 0.5, 0.75 to 1, more

people leave the susceptible class to join the
exposed class. This implies that majority of
the population are subjected to the risk of
getting infected and if control strategy such as
implementing measures that are capable of
reducing the disease transmission coefficient
is not taken into consideration by health
workers, eradicating the disease may not be
feasible. In general, it will be observed that
disease transmission coefficient plays vital role
in disease eradication that is the lower the

value of f the better eradication.

IV. Conclusion

From the simulation results of the model, it

observed that disease transmission

plays
eradication. i.e. the

was

coefficient vital role in disease

lower the disease

transmission coefficient, the better

Also, the
Decomposition Method is a powerful tool for

eradication. Laplace Adomian

analyzing the results because it gives a better
approximation which converges to the exact
solution when there exist any.

Table A: Table of Abbreviations

S/N ABBREVIATION MEANING

1 SEIR Susceptible-Exposed-

Infected-Recovered

2 LADM Laplace-Adomian-
Decomposition -
Method

3 SEIRS Susceptible-Exposed-

Infected-Recovered-

248

Susceptible

4 HAM Homotopy  Analysis
Method

5 VP Initial Value Problem

HIV Human

Immunodeficiency
Virus
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