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Stability Analysis of HIV/AIDS Epidemic Model in the Presence of Vertical 

Transmission and Treatment 
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N.O and Afolabi, H.A.

Abstract: HIV/AIDS is a serious health problem that continues to present a significant health 

concern in underdeveloped nations and may be mostly brought on via unprotected sex. This study 

is designed and analyzed using a dynamic modeling approach to investigate the dynamic of 

HIV/AIDS model with vertical transmission and the impact of knowledge on its treatment. Our 

proposed model exhibit disease free and the endemic equilibrium. The uniqueness and the 

exactness of the model were investigated and the basic reproduction number using next generation 

matrix was obtained, Stability analysis was also carried out. The model analysis shows that the 

disease free equilibrium is locally asymptomatically stable (LAS) when 10 R . Our research 

suggests that treatment and awareness campaigns, when combined with other crucial control 

measures, may help keep the HIV/AIDS virus from spreading. 

Keywords: HIV/AIDS, Vertical transmission, Basic reproductive number, Local Stability, 

Enlightenment campaign    

 

I. Introduction 

AIDS stand for acquired immunodeficiency 

syndrome, a disease that makes it difficult for 

the body to fight off infectious disease. The 

human immunodeficiency virus known as HIV 

causes AIDS by infecting and damaging the 

CD4+ T-cells, which are a type of white blood 

cells in the body immune system that is 

supposed to fight off invading germs [1 – 3]. In 

a normal healthy individual’s peripheral blood, 

the level of CD4+   T-cells is between 800 and 

1200/mm3 and once this number reaches 200 

or below in HIV infected patient, the person is 

classified as having AIDS [4]. HIV can be 

transmitted through direct contact with the 

blood or body fluid of someone who is infected 

with the virus, that contact usually comes from 

sharing needles or by having unprotected sex 

with an infected person [2–6]. An infant could 

get HIV from a mother who is infected, not 

everyone with HIV has AIDS, and in fact adults 

who become infected with HIV may appear 

healthy for years before they get sick with AIDS 

[7].  

Globally, more than 50 million people are living 

with HIV/AIDS and over 30 million have died 

since 1981. About 95% of people with HIV live 

in developing and moderate in-come nations 

and over 28million people with HIV living in 

poor and moderate in-come countries should be 

on antiretroviral medication [8]. 

Mathematical modeling has emerged as a crucial 
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technique for monitoring the dynamics, 

management, and progression of HIV 

infections through numerical simulations [2–9]. 

Clinical studies on the process of HIV 

transmission utilizing human subjects are 

obviously not possible. For this reason, a 

number of mathematical models that explained 

the epidemiological dynamics of HIV/AIDS 

infections have been presented. [10–18, 19, 21]. 

The underlying assumptions of the various 

models range from those based on the mode of 

HIV transmission, contact patterns, latent and 

infectious period, as well as social, cultural, 

economic, demographic, or geographic factors. 

Several significant works have been presented 

and published for sub-Saharan Africa (generally) 

and a few selected south and east African 

nations [19 - 26].  

The aim of this research is to propose and 

develop a deterministic mathematical model to 

investigate how vertical transmission affects the 

spread of HIV/AIDS infection and then 

suggest potential intervention techniques. 

The structure of this work is as follows. In 

section 2, we established a modified HIV/AIDS 

model and analyze   some properties of 

disease free and endemic equilibria, 

reproductive number was also obtained, 

numerical simulation was also carried. In section 

3, result and discussion were presented. In 

section 4, conclusions were presented. 

II.  Materials and Methods 

A. Model Formulation 

Considering the classical assumption of [8–19] 

by introducing vertical transmission and 

treatment, we assumed that the fraction of new 

born baby that are infected during birth join the 

infective asymptomatic with the rate 

 1 and others die at the birth  10   .  

i. modified model: 
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Table 1: Parameter Description 

Parameter description Variable 

Susceptible   tS  

Asymptotic class  tI  

Symptomatic class  tJ  

Treatment class  tT  

AIDS class  tA  
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Table 2: Parameter Description with Symbol 

Parameter description Parameter 

Average number of contact per unit of time C 

Recruitment rate   
Progression rate from Symptomatic to AIDS   

Progression rate from Asymptomatic to AIDS   
Progression rate from treatment to AIDS    d  

Probability of disease transmission per contact by Asymptomatic infective    

Fraction of newborns infected with HIV who dies immediately   

Rate of newborn infected with HIV   

Disease induced dearth    

Treatment rate from symptomatic class to treatment   

Natural death   

Enlightenment rate for the treatment  y  

 

Figure 1: Schematic Diagram of an HIV/AIDS 

Model 

B. Existence and Uniqueness of Solution 

for the Model 

For the model to predict the future of the 

system from its current state at the time t0, the 

initial value problem (IVP) Must have a solution 

that exist and also unique. In this subsection, we 

will establish the condition for the model's 

existence and uniqueness of 

solution.

    00, XtXxtFX i 
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So that, 

   xfxtfx i  ,  

i. theorem 

Let Di denote the region 

   0201002100 ,...,,...,, nni xxxxxxxxbxxatt 

 

And suppose that  xtf ,  satisfies the Lipchitz 

condition 

    2121 ,, xxRxtfxtf   
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Whenever the pair  1, xt  and  2, xt  belong to 

Di, where K is a positive constant. Then there 

exist a constant 0  such that there exist a 

uniqueness continuous vector solution  tx


 of 

the system in the interval  0tt                                     

(Derrick and Grossman) 

It is important to note that the condition is 

satisfied by requirement that nji
x

f

j

i ...2,1,, 



be 

continuous and bounded in Di 

C. Basic Reproduction Number (R0) 
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D. Equilibrium and their Stability 

 In the absence of disease infection in the 

population, 0I .Solving equation (1) the 

disease – free equilibrium  was obtained as  
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Also, in the presence of disease infection in the 

population, 0I . Solving (1) admits a unique 

solution  
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Where;                                                                                  
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E. Local Stability of Disease Free 

Equilibrium 

Preposition 1 

If 10 R , then the disease free equilibrium 

0E is locally asymptotically stable. 

Proof 

Considering Linearization method, the resulting 

characteristic equation of system (1) is 
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Computing the Trace and the determinant of 

the matrix above, thus the trace at DFE  is 

given by; 
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The Trace    is negative and the determinant is 

positive with the same condition. Thus, the 

disease free equilibrium is asymptotically stable 

provided the 10 R . 

 III.  Results and Discussion 

A. Numerical Simulation 

We use the numerical software (MAPLE) to 

plot the graph, we obtain the following; 

 

Fig 2: Behavioral Dynamic of the 

Compartments against time when 

Contact Rate =0.0005. 

 

Fig 3: Behavioral Dynamic of the 

Compartments against time when 

Contact Rate =0.0002. 

Fig 2 and 3 Shows the behavior of  susceptible 

population when the contact rate is reduces 
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from 0.0005 to 0.0002, the susceptible 

population increases drastically and tends to 

equilibrium, this could be as a result  of 

enlightenment campaign to go for HIV/AIDS 

treatment and avoid been contact with the 

infected individual. The Treatment class rises 

significantly and drop drastically and attained an 

equilibrium position and remain steady after 

sometimes. This could be as a result of 

carefulness of susceptible individual not to have 

contact with infected individual. The 

asymptomatic Class and symptomatic class 

decreases significantly; also the AIDS class also 

reduces as the contact rate reduces from 0.0005 

to 0.0002.  

 

Fig 4:  Dynamic behavior of   Asymptomatic 

with Varying Value of Enlightenment 

Rate against Time  

It is seen from figure 4 that with increase in the 

value of enlightenment rate y  , the asymptotic 

class decreases.  

 

 

Fig 5: Dynamic behavior of   Asymptomatic 

with Varying Value of Fraction of 

Newborns Infected with HIV who dies 

immediately against time  

The asymptotic behavior versus time is depicted 

in Fig. 5 together with the varying percentage of 

HIV-positive babies that pass away at birth. It is 

clear that the population of people who are 

asymptomatic decreases as the proportion of 

HIV-positive neonates who die right away rises. 

 

Fig 6:  Dynamic behavior of Treatment against 

Time with Varying Value of 

Enlightenment Rate(y).  

In Fig. 6, it can be seen that raising awareness 

makes it more likely for HIV-positive people to 

seek treatment, which increases the number of 

people in the treatment class. When people with 

HIV are made aware of the risks of delaying 
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treatment, more will seek it, which will increase 

the number of people receiving it. 

 

Fig 7: Graph of Asymptomatic, Symptomatic, 

Treatment and AIDS against Time 

when   Enlightenment Rate(y) is 0.8 and 

9.0   

Figure 7 shows that when there are few 

newborn HIV-positive babies in the community 

due to the high proportion of newborns who 

die from HIV infection right away 9.0 . As 

enlightenment rate (y) is 0.8 the proportion of 

symptomatic decreases continuously which 

leads to increasing in population receiving 

treatment initially but decreasing as the 

asymptomatic rises initially but decreases 

drastically and nearly goes extinct, this in turn 

causes an increase in full-blown AIDS. 

IV.  Conclusion  

This study introduce a deterministic 

mathematical model for HIV/AIDS 

transmission, we discussed a stability analysis of 

an HIV/AIDS epidemic model with vertical 

transmission and treatment. We can control the 

disease burden by controlling the effective 

contact rate of the infected population and 

continue to enlighten people about the virus. we 

conclude that, using an effective educational 

enlightenment campaign on the spread of the 

disease is the most effective way to control 

HIV/AIDS transmission within the population, 

and AIDS patients should also be encouraged 

to seek treatment regularly in order to protect 

their lives and as this will lower the disease-

related mortality rate.         
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