

UNIOSUN Journal of Engineering and Environmental Sciences. Vol. 6 No. 1. March. 2024

DEVELOPMENT OF MOBILE APPLICATION FOR SIGN LANGUAGE
TRANSLATION USING DEEP LEARNING TECHNIQUE

Omodunbi,B. A., Soladoye, A. A.*, Okomba, N. S., Asaolu, O., Ayoola, J. I., Odeyemi,
P. B.

Abstract Sign Language is a visual and gestural language used by deaf and hard-of-hearing people
to communicate. However, communication between hearing and non-hearing individuals can be
challenging due to the language barrier. In order to overcome this barrier, a Mobile based
Translator is being proposed using Convolutional Neural Network (CNN) to recognize and
translate hand gestures in real-time. The proposed system consists of a CNN model trained on a
large dataset of hand gestures that includes various signs, such as the alphabet, numbers, and
common phrases to recognize various signs, and a backend server to handle the translation of the
recognized signs into text. The system was implemented using various CNN architectures like
ResNet, MobileNet and VGG-16, where the later gave the best accuracy of 97.69%. The trained
VGG-16 model recognizes the signs by extracting features from the images of the hand gestures
and using these features to classify the gestures. Once a gesture is recognized, the backend server
translates it into text using a pre-defined mapping of signs to words or phrases. The translated text
will then be displayed to the user in real-time on the mobile app, enabling seamless communication
between hearing and non-hearing individuals. The proposed system was implemented as a mobile
app using Flutter, which is a cross-platform development framework. This mobile app make
communication easier for vulnerable and enable sharing of information without any discrimination.

Keywords: Sign language, Transfer Learning, Flutter, Gesture Recognition, Software Engineering

I. INTRODUCTION

Sign language is a visual language used by

individuals who are deaf or hard of hearing to

communicate with others. However, many

people do not know sign language, which can

lead to communication barriers for deaf

individuals. Communication is a fundamental

need, yet millions of people around the world

face significant barriers to effective

communication due to language and sensory

differences [1]. Sign Language communication is

expressed by movements of the hands. The

most common sign language is American Sign

Language (ASL), commonly used in many

countries across the world and adapted for use

in varying countries. The other main sign

language used in Canada is la Langue des Signes

Québécoise (LSQ); there is also a regional

dialect, Maritimes Sign Language (MSL) [2].

Deaf and hard-of-hearing individuals, or

instance, often rely on sign language as their

primary mode of communication, but this can

pose challenges when interacting with non-sign

language users. This communication gap can

lead to isolation, frustration, and missed

opportunities.

To address this issue, this study developed a

Mobile-based sign language translator using

convolutional neural networks (CNNs)

architectures and natural language processing

(NLP) techniques. The goal is to provide a real-

time and accurate sign language translation

system that can bridge the communication gap

 Omodunbi,B. A., Soladoye, A. A., Okomba, N. S.,
Asaolu, O., Ayoola, J. I., Odeyemi, P. B.

(Department of Computer Engineering, Federal
University, Oye-Ekiti, Nigeria)

Corresponding Author: Afeez.soladoye@fuoye.edu.ng
Phone Number: 08107740087; 07047287138

DOI: 10.36108/ujees/4202.60.0101

mailto:Afeez.soladoye@fuoye.edu.ng

108

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

between sign language users and non-sign

language users. The system uses a CNN models

trained on a large dataset of sign language

gestures to recognize and classify different signs

in real-time. This study implements the design,

development and deployment of an Android &

iOS based Sign-language translator that can

recognize and translate American Sign Language

(ASL) gestures in real-time using Convolutional

Neural Network (CNN) and Natural Language

Processing (NLP) engine.

Most works are on sign language recognition [3-

5] which is just to detect the hand gesture and

recognize it as an alphabet, number, word or

sometimes sentence if it is video, this process

of gesture recognition in videos is known as

gloss [6]. Ordinarily, gesture recognition of sign

language is not always enough in

communication as the recognized gloss have to

be translated into a readable language text so as

to aid communication between less privileged

and privileged ones. However, in recent time,

researchers are now focusing on sign language

translation, some of these researches are

reviewed in this section so as to know the state-

of-art in sign language translation.

 A PC-based sign language based translator was

developed by [7] using Python and TensorFlow.

It translates ASL gestures to written texts with

audio renderings in about one second and can

match real-time gestures with equivalent gesture

images at 44% similarity. The PC-based sign

language translator uses machine learning for

wider accessibility, however, it has limited

matching accuracy. Furthermore, [8] discussed

the use of image processing, specifically the

Convolutional Neural Network (CNN), to

convert sign language into speech or text. The

authors have developed a sign detector for

Indian Sign Language (ISL) to recognize

numbers 1-10 and plan to extend it to recognize

other gestures and expressions. This approach is

widely accepted because of its potential in

removing language barriers for those with

hearing impairments, as widely accepted as the

system is, it’s had issues recognizing more

complex sign language gestures and the need for

further testing and refinement. Similarly, [9]

proposed the need for a product that can

transform sign language into a form that can be

understood by common people. The authors

suggest using Raspberry Pi, gesture recognition,

and image detection with Python to achieve this

goal. This approach makes sign language more

accessible to a wider audience.

An approach for real-time recognition of Indian

Sign Language using CNN and neural networks

was presented by [10], with the aim of

improving communication for people with

hearing and speaking disabilities. The system’s

potential lies in its ability to provide a means of

communication without the need for a

translator, but is specific to Indian Sign

Language. Similarly, [11] proposed a system that

aims to improve the inclusion of hearing-

impaired people by converting speech input

into text and translating it into sign language

using natural language processing and machine

learning. The system is based on Python. The

system has potential to increase knowledge and

awareness of sign language and to facilitate

communication for hearing-impaired individuals

but may need further development and

refinement to improve accuracy and usability.

[12] Proposed an approach to improve

communication between deaf and mute

individuals and those without communication

impairments. The approach involves training a

model to recognize common sentences

exchanged between buyers and sellers using

hand gestures and Google Teachable Machine.

109

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

The approach uses technology to bridge

communication gaps and promote inclusivity

cannot account for individual variability in

gestures and language use.

A sign language translator system that uses

American Sign Language (ASL) dataset for

recognizing the sign language alphabet and

converting it into text to speech was proposed

by [13]. The system achieves a 74% accuracy

rate and can also be helpful for blind people.

The system’s hand-tracking techniques and its

ability to bridge the communication gap

between deaf-mute individuals and others

makes it powerful. It needs improvement in

accuracy and the system only recognizes ASL.

[14] proposed a system for real-time American

Sign Language perception using a combination

of Convolutional Neural Networks and the You

Only Look Once (YOLO) algorithm. The

system improved communication between

hearing and hearing-impaired individuals by

accurately recognizing and translating sign

language gestures. The system uses advanced

machine learning techniques (CNN and

YOLO), but may not be accurate in terms of

the hand tracking and segmentation algorithms.

From all the aforementioned studies, majority

of the studies employed CNN but its pre-

trained architectures like VGG, ResNet and

MobileNet were not explored. Also little work

was done on mobile app development for sign

language translation to text for easier

communication between people living with

disability and others that hear and speak. This is

the major gap this study aimed to fill by

exploring difference architectures of CNN and

use the best performing architecture to develop

a mobile app that can be used on smartphones

for easier communication.

II. MATERIALS AND METHODS

The development of the system involves two

phases, the first phase involves different stages

of training and evaluating different CNN

architectures and the second phase involves

development of the mobile app. These stages

including the deep learning technique

methodology and deployment are represented

in Figure 1, which shows the data acquisition,

preprocessing, training and evaluation and

deployment.

A. Data Acquisition

The dataset was gotten from Kaggle as used

by Rahman et al., [15], the dataset composed

of images of hands performing various ASL

gestures or signs. But then, to ensure locality

of the study and improve learning of the

model and further reduce overfitting, over

2000 local dataset were additionally acquired,

that featured dark skinned hands doing the

sign language. These hand gestures represent

all the letters and numbers in the American

Sign Language. Each sample in the dataset is

associated with a corresponding label

indicating the ASL sign it represents. In order

to localize the system, these local dataset were

locally acquired by the researchers. Some of

the images present in the dataset is shown in

Figure 2.

The summary of the dataset used in this study

is presented in Table 1 for clarification and

reference. As this showed the resolution of

each image present the dataset to be 64 x 64

pixel, with Jpeg extension, containing a total

of 9500 images, with each class (alphabet,

number, words and phrases) having 200

images and the color format is RBG. This

helps in ensuring the dataset is well described

for better understanding.

110

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

Figure 1: Overview of image recognition methodology

Figure 2: Overview of sign languages [15]

Table 1: Dataset description

Specification Value

Resolution 64 by 64

Extension .jpg

Number of images 9500

Number of classes 36

Number of images per

class

200

File size 10kb – 20kb

Channel 3 (RGB)

111

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

B. Data pre-processing

This stage of the system development is to

ensure the dataset is well process for better

performance of the model. This study employed

some preprocessing techniques like Data

cleaning, Data augmentation

i. Data Cleaning: involves removing any

irrelevant data, such as images with poor

lighting or unclear hand gestures. The

images with incomplete or incorrect

annotations were removed. Data

normalization involves scaling the data so

that all the images have the same

resolution, frame rate, and color space.

This ensures that the model is not biased

towards any particular image quality or

format.

ii. Data augmentation: involves generating

additional training data by applying random

transformations to the existing images,

such as flipping, rotating, and zooming.

This helps to increase the size of the

training set and improve the model's ability

to generalize to new data. Techniques such

as random cropping and color jittering

were applied to further enhance the

diversity of the training data.

C. CNN model for recognition

This study employed VGG-16 as the

classification algorithm after series of

experimentation have been carried on using

other architectures of CNN like ResNet and

MobileNet and the study found out the VGG-

16 gave the best performance accuracy. VGG-

16, developed by the Visual Geometry Group

and Google DeepMind, is a convolutional

neural network model proposed for image

recognition tasks. This model has 16 layers and

has a reputation for being very effective in the

ImageNet Large Scale Visual Recognition

Challenge. The study applied transfer learning,

using the VGG16 model's learned features as a

starting point for the sign language classification

task. This is a common and effective strategy

for deep learning, especially when the available

dataset is relatively small.

This pre-trained model was modified so as to

avoid and cater for domain mismatch which is

one of the major drawback of employing

transfer learning technique. The modification

done on the original VGG-16 are highlighted as

follows:

i. Classifier_vgg16.output: Here, the study used

the output of the VGG16 model as the

input to the custom layers. This output

will contain the learned feature maps

from the VGG16 model.

ii. Flatten (): This layer is used to convert the

multi-dimensional input into a single

dimension array. It prepares the vector

for input into the dense, feed-forward

neural network layers that follow.

iii. Dense (units=256, activation='relu'): This is

a fully connected layer where each input

node is connected to each output node.

The study specified 256 units, meaning

there are 256 output nodes. The

activation function is 'relu', or Rectified

Linear Unit, which will output the input

directly if it is positive, otherwise, it will

output zero.

iv. Dropout (0.6): Dropout is a regularization

technique for reducing overfitting in

neural networks. During training, 60% of

the units in the previous layer will be

randomly ignored. This helps to make

sure the network doesn't rely too heavily

on any single (or small group of)

neuron(s).

v. Dense (units=36, activation='softmax'): This

is the final layer of our network. It has 36

112

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

output nodes, which corresponds to the

number of classes we have in your

dataset. The 'softmax' activation function

is generally used in the output layer of a

network for multi-class classification

problems. It gives the probabilities of the

input being in each class, and all the

probabilities will sum to 1.

Finally, the VGG-16 model was compiled using

'adam' as the optimizer,

'categorical_crossentropy' as the loss function

(which is suitable for multi-class classification),

and 'accuracy' as performance metric. The

Adam optimizer is a popular choice because it

combines the best properties of the AdaGrad

and RMSProp optimization algorithms to

provide an optimization algorithm that can

handle sparse gradients on noisy problems.

'Categorical_crossentropy' loss function is used

as a loss function for classes greater than 2. It

expects the labels to be provided in a one_hot

representation i.e., For N classes, each label

should be a N dimensional vector where only

one element is 1 (indicating the correct class),

and the rest are 0. The 'accuracy' metric

computes the accuracy rate, which is the

proportion of correct predictions to the target

size.

The code snippet for training of the model is

represented in Figure 3 which show the code

for splitting the whole dataset to training and

testing, and shows the output of the total

number of images used for training and

evaluating the model.

Figure 3: Code snippet for splitting the dataset

113

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

D. Model performance evaluation

The model was evaluated to ascertain its

performance before it as integrated into the

frontend for functionality. This study employed

the common evaluation matric which is

accuracy, this metrics is mathematically

represented as given in (1)

 (1)

E. Frontend development

The project frontend is built on Flutter. Written

in the Dart Programming Language. Flutter is

an open source UI framework developed by

Google for creating natively compiled

applications for mobile, web and desktop. It is

particularly renowned for its efficiency in

building high-quality, visually appealing user

interfaces. Flutter utilizes a unique approach

called “widget” architecture, where user

interface components are represented as

widgets. These widgets are customizable and

can be composed together to create complex

user interfaces. Flutter provides a rich set of

pre-designed widgets that cover everything from

basic buttons to advanced layouts, making it

easier to build engaging and consistent user

experiences.

To set up a Flutter project, the following steps

were employed:

i. Installed Flutter Dependencies, as it has

some platform-specific dependencies.

ii. Created a new Flutter project in a terminal

by navigating to the directory to create the

Flutter project.

iii. Ran the command ‘flutter create

motion_verse’ to generate a new Flutter

project.

iv. Used the ‘cd’ command to navigate into the

newly created project directory ‘cd

motion_verse’.

v. Ran the application by connecting a

physical device. In the terminal, ran ‘flutter

run’ to compile and launch the Flutter

application on the connected physical

device.

vi. Itched to the ‘lib/main.dart’ file to start

building the application.

Figure 4 shows how the trained and evaluated

model was integrated into the frontend for

userability. This is done using the function

‘runModel’ that takes in the Camera Image

parameter. The ‘runModelOnFrame’ function is an

in-built TensorFlow Lite function that starts by

loading the pre-trained model. It is designed to

perform inference on a selected image frame.

The function is responsible for loading the

model, pre-processing the input image, running

the inference, and returning the output. This

function got called from other parts of the

application whenever image inference was

required, reducing code duplication.

Figure 5 shows how the ‘loadModel’ function was

responsible for loading the pre-trained model

onto the device’s memory. It takes parameters

of the model and label, the function ensures

that necessary memory space is reserved to

store the parameters and intermediate

computation results. The model parameter takes

in the model file that contains the model’s

architecture and the trained weights. The loaded

interpreter and tensor details loaded on the

application’s initialization or when the model is

required for inference

114

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

Figure 4: Code snippet for model integration

Figure 5: Snippet of the model and label

115

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

F. Implementation and experimental

setup

The study was implemented on Visual Studio

Code (VS Code) - a versatile and widely-used

source code editor known for its lightweight

design and powerful features. Being a system

built on deep learning model, Tensor Flow was

employed which enabled the creation and

training of deep learning models to recognize

and translate sign language gestures into text or

speech. ImagePro was also used, this mobile

application was used to gather the local dataset.

And Matplotlib is the library that provides

powerful visualization capabilities that can help

in understanding the data.

III. RESULTS AND DISCUSSION

This section provides the reader with the

experimental results obtained while training

different CNN architectures to select the best

for integration into the mobile app and the

interfaces of the developed sign language

translation mobile app.

A. Experimental results of the CNN

models

During the training of the three models, their

average training and validation accuracies and

losses were obtained so as to show how well

trained they were. This is represented in Table 2

where the three models’ training and validation

average accuracy and loss were presented.

From Table 2, it would be observed that VGG-

16 had the best average training and validation

accuracies of 0.8946 and 0.9556 respectively,

while ResNet gave the lowest as regards the

aforementioned metrics, the drastic increase in

ResNet validation loss and very low validation

accuracy shows it is not well performing at all.

ResNet training loss is quite high (1.9929), and

the validation loss increased significantly (from

14.6348 to 493.4237) during training. These

results indicate that the model did not perform

well and struggled to learn the underlying

patterns in the data. The extremely low

validation accuracy further suggests that the

model failed to generalize to unseen data. The

same thing is applicable to the average training

and validation loss. From this, it obviously

implies that VGG-16 was well trained and gave

confirming performance accuracy.

The result presented in Table 2 could be

buttress with Figure 6 that shows the training

accuracies and losses obtained while training the

VGG-16 model. This shows the movement in

the accuracies and losses over 40 epochs that

the model was trained with.

Table 2: Comparison of CNN models’ training results

Metrics VGG-16 ResNet MobileNet

Training Loss 0.3825 1.9929 0.8354

Training Accuracy 0.8946 0.6298 0.7712

Validation Loss 0.1582 493.4237 0.2109

Validation Accuracy 0.9556 0.0343 0.9546

116

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

These models were then tested on the testing

set for evaluation. The Experimental result of

the models on the testing set is presented in

Table 3 for clarification.

As shown in Table 3, VGG-16 and MobileNet

models performed well on both the test and

evaluation images with average accuracies of

95.6, 97.7, 95.5 and 96.6 respectively, achieving

high accuracy and demonstrating good

generalization. On the other hand, the ResNet

model showed poor performance, with very low

accuracy on both datasets. Therefore, the

VGG16 and MobileNet models are more

reliable for making accurate predictions on

unseen images compared to the ResNet model.

From the result shown in Table 2 and 3, it

obviously implies that VGG-16 was the best

performing model among the three (3) CNN

models experimented.

B. Sign language translator mobile app

deployment

Figure 7 delves into the introduction of the key

details of the application where users see

illustrations in carousel format showing that the

application helps translate sign language. It

serves as a central hub for users to engage with

the application’s core features. The home screen

features a carousel of illustrative content,

strategically positioned to capture user’s

attention upon launch. The carousel design

introduces a dynamic element, engaging users

with visually appealing graphics that align with

the application’s theme and purpose. There are

other significant elements on the home screen

that contribute to enriched user experience: the

light-dark mode switch button and a dedicated

section showcasing the application’s

functionalities. The inclusion of a light dark-

mode switch button on the home screen

provides users with flexibility to tailor the

application’s appearance to their comfort. All

the home screen elements collectively enhance

the user experience and provide valuable

insights into the application’s capabilities.

Figure 8 shows the functionality of the camera

screen that enable users to translate sign

language gestures representing numbers (0-9)

and (a-z). This feature showcases real-time

recognition and translation through camera

streaming. The camera screen harnesses

advanced computer vision and machine learning

technologies to process real-time video input

from the device’s camera. It employs

convolutional neural network techniques to

detect and interpret users’ sign language

Figure 6: VGG-16 Training accuracies

and losses

117

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

gestures, particularly those corresponding to

numbers and alphabetic characters. When a

hand gesture matches a recognized sign for a

number or alphabetic character, the screen

overlays a board showing possible recognitions

and their accuracy percentage as recognized

using the developed model. The translated

content is displayed beneath the camera feed

allowing users to see the recognized sign and its

corresponding translation simultaneously as

shown in Figure 9. The screen is designed to be

intuitive and unobtrusive, allowing users to

focus on their hand gestures and translated

content.

Table 3: Comparison of CNN models’ testing results

Metrics VGG-16 ResNet MobileNet

Accuracy of test images. 95.556% 3.426% 95.463%

Accuracy for Evaluation Images. 97.685% 2.13% 96.574%

Figure 7: The Mobile app Home Screen

Figure 8: The mobile-app

(Motion-verse) Camera Screen

118

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

Figure 9 shows the implementation of the sign

language dictionary feature in the application.

This feature in the application provides a

comprehensive collection of sign languages

corresponding to A-Z and 0-9 complete with

images and details. The data is stored in a

database, and the dictionary offers a search

functionality for users to quickly find specific

signs. The architecture, database integration,

user experience, search functionality is

discussed. The sign language dictionary

leverages the Firebase database to efficiently

store and manage the extensive collection of

sign languages. The database capabilities ensure

IV. CONCLUSION

This research has effectively addressed the

communication challenges experienced by the

deaf and hard-of-hearing community, stemming

from the lack of sign language proficiency

among non-sign language users. The central

objective of creating a mobile-based sign

language translator using convolutional neural

networks (CNNs) technique has been

successfully achieved. The significance of this

seamless updates and synchronization across

devices. The search functionality ensures that

users can search for specific sign languages by

entering characters, numbers, and keywords

into the search bar. As users type their search

queries, the dictionary dynamically filters entries

to display relevant matches in real time. Users

can browse sign languages categorized by

alphabetic characters. Clicking on a specific sign

language entry navigates users to a dedicated

screen displaying comprehensive details

including images depicting the sign language

gesture

project extends to its potential to bridge the
communication gap between sign language
users and the broader community. By
harnessing the capabilities of Convolutional
Neural Networks and Natural Language
Processing, we have managed to develop a real-
time and precise sign language translation
system that operates seamlessly across both
Android and iOS platforms. Future work(s)
should focus on inclusion of diverse and
extensive collection of English words and

Figure 9: Motion-verse dictionary screen

119

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

expanding the system's scope to be able to
translate multiple sign languages would
significantly enhance its utility, while the present
version concentrates on Android devices, it is
advisable to extend the availability of the sign
language translator to iOS users.

REFERENCES

[1] Núñez-Marcos, A.; Perez-de Viñaspre,

O.; Labaka, G. “A survey on Sign

Language machine translation”. Expert

System Application. Volume 213, Number

118993, 2013

[2] Zhou, H.; Zhou, W.; Zhou, Y.; Li, H.

“Spatial-temporal multi-cue network for

continuous sign language recognition”. In

Proceedings of the AAAI Conference on

Artificial Intelligence, New York, NY, USA,

7–12, 2020, Volume 34, pp. 13009–13016.

[3] Cui, R.; Liu, H.; Zhang, C. “Recurrent

convolutional neural networks for

continuous sign language recognition by

staged optimization”. In Proceedings of the

IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 21–

26 July 2017; pp. 7361–7369.

[4] Cihan Camgoz, N.; Hadfield, S.; Koller,

O.; Bowden, R. “Subunets: End-to-end

hand shape and continuous sign language

recognition”. In Proceedings of the IEEE

International Conference on Computer Vision,

Venice, Italy, 22–29 October 2017; pp.

3056–3065.

[5] Koller, O.; Zargaran, S.; Ney, H.; Bowden,

R. “Deep sign: Enabling robust statistical

continuous sign language recognition via

hybrid CNN-HMMs”. International Journal

of Computer Vision. Volume 126, 2018. pp.

1311–1325

[6] Liang, Z.; Li, H.; Chai, J. “Sign Language

Translation: A Survey of Approaches and

Techniques”. Electronics. Volume 12,

Number 2678. 2023. https://

doi.org/10.3390/electronics12122678

[7] Amusa, K. A., Olanipeku, A. J., Erinosho,

T. C., and Abiodun Akeem Salaam, S. S.

Development of a PC-based sign language

translator. International Journal of Informatics

and Communication Technology (IJ-ICT), 2022

pp.23-31.

[8] Yerpude, P., Jagat, P., Sahu, R and Dubey,

P. “Non-Verbal (Sign Language) To

Verbal Language Translator Using

Convolutional Neural Network”.

International Journal for Research in Applied

Science & Engineering Technology (IJRASET),

Volume 10, Number I, 2022. Pp. 269-273.

[9] Pawar, S., Bamgude, A., Kamth, S., Patil,

A. and Barapte, R. “Gesture Language

Translator Using Raspberry Pi”.

International Journal for Research in Applied

Science & Engineering Technology (IJRASET),

Volume 10, 2022. Pp. 566-570.

[10] Mendhe, M., Bawankule, R., Udapurkar,

A., Gogiya, R., Gaikwad, R. and Saggu, J.

K. “SignReco: Sign Language

Translator”. International Research Journal of

Engineering and Technology (IRJET), Volume:

09, Number 3, 2022. Pp. 328-332.

[11] Valarmathi, V., Sowmiya, S. and

Viswanathan, M. EquiSign Dynamic Sign

Language Translator. International Journal of

Engineering Research in Computer Science and

Engineering. (IJERCSE), Volume 9,

Number 7, 2022. Pp. 13-17.

[12] Khan, W. “A Robust Business Specific

Real-Time Sign Language Translator”.

120

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)

International Journal for Research in Applied

Science & Engineering Technology (IJRASET),

2022. Pp. 308-311.

[13] Rani, A and Manjanaik, N. “Sign

Language to Text-Speech Translator

Using Machine Learning”. International

Journal of Emerging Trends in Engineering

Research, Volume 9, Number 7,2021 pp.

912 – 916.

[14] Bhavadharshini, M., Josephine, R. J.,

Kamali, M., Sankar, S. and Bhavadharshin,

M. “Sign Language Translator Using

YOLO Algorithm”. Advances in Parallel

Computing Technologies and Applications,

2021. Pp. 159-166.

[15] Rahman, M. M., Islam, M. S., Rahman, M.

H., Sassi, R., Rivolta, M. W. and

Aktaruzzaman, M. “A New Benchmark

on American Sign Language Recognition

using Convolutional Neural Network”. In

the proceedings of the 2019 International

Conference on Sustainable Technologies for

Industry 4.0 (STI) December, Dhaka. 2021.

Pp. 24-25

