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DEVELOPMENT OF MOBILE APPLICATION FOR SIGN LANGUAGE 
TRANSLATION USING DEEP LEARNING TECHNIQUE 

Omodunbi,B. A., Soladoye, A. A.*, Okomba, N. S., Asaolu,  O., Ayoola, J. I., Odeyemi, 
P. B.   

Abstract Sign Language is a visual and gestural language used by deaf and hard-of-hearing people 
to communicate. However, communication between hearing and non-hearing individuals can be 
challenging due to the language barrier. In order to overcome this barrier, a Mobile based 
Translator is being proposed using Convolutional Neural Network (CNN) to recognize and 
translate hand gestures in real-time. The proposed system consists of a CNN model trained on a 
large dataset of hand gestures that includes various signs, such as the alphabet, numbers, and 
common phrases to recognize various signs, and a backend server to handle the translation of the 
recognized signs into text. The system was implemented using various CNN architectures like 
ResNet, MobileNet and VGG-16, where the later gave the best accuracy of 97.69%. The trained 
VGG-16 model recognizes the signs by extracting features from the images of the hand gestures 
and using these features to classify the gestures. Once a gesture is recognized, the backend server 
translates it into text using a pre-defined mapping of signs to words or phrases. The translated text 
will then be displayed to the user in real-time on the mobile app, enabling seamless communication 
between hearing and non-hearing individuals. The proposed system was implemented as a mobile 
app using Flutter, which is a cross-platform development framework. This mobile app make 
communication easier for vulnerable and enable sharing of information without any discrimination. 

Keywords: Sign language, Transfer Learning, Flutter, Gesture Recognition, Software Engineering 

I. INTRODUCTION 

Sign language is a visual language used by 

individuals who are deaf or hard of hearing to 

communicate with others. However, many 

people do not know sign language, which can 

lead to communication barriers for deaf 

individuals. Communication is a fundamental 

need, yet millions of people around the world 

face significant barriers to effective 

communication due to language and sensory 

differences [1]. Sign Language communication is 

expressed by movements of the hands. The 

most common sign language is American Sign 

Language (ASL), commonly used in many 

countries across the world and adapted for use 

 

 

 

 

in varying countries. The other main sign 

language used in Canada is la Langue des Signes 

Québécoise (LSQ); there is also a regional 

dialect, Maritimes Sign Language (MSL) [2]. 

Deaf and hard-of-hearing individuals, or 

instance, often rely on sign language as their 

primary mode of communication, but this can 

pose challenges when interacting with non-sign 

language users. This communication gap can 

lead to isolation, frustration, and missed 

opportunities.  

To address this issue, this study developed a 

Mobile-based sign language translator using 

convolutional neural networks (CNNs) 

architectures and natural language processing 

(NLP) techniques. The goal is to provide a real-

time and accurate sign language translation 

system that can bridge the communication gap 
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between sign language users and non-sign 

language users. The system uses a CNN models 

trained on a large dataset of sign language 

gestures to recognize and classify different signs 

in real-time. This study implements the design, 

development and deployment of an Android & 

iOS based Sign-language translator that can 

recognize and translate American Sign Language 

(ASL) gestures in real-time using Convolutional 

Neural Network (CNN) and Natural Language 

Processing (NLP) engine. 

Most works are on sign language recognition [3-

5] which is just to detect the hand gesture and 

recognize it as an alphabet, number, word or 

sometimes sentence if it is video,  this process 

of gesture recognition in videos is known as 

gloss [6]. Ordinarily, gesture recognition of sign 

language is not always enough in 

communication as the recognized gloss have to 

be translated into a readable language text so as 

to aid communication between less privileged 

and privileged ones. However, in recent time, 

researchers are now focusing on sign language 

translation, some of these researches are 

reviewed in this section so as to know the state-

of-art in sign language translation. 

 A PC-based sign language based translator was 

developed by [7] using Python and TensorFlow. 

It translates ASL gestures to written texts with 

audio renderings in about one second and can 

match real-time gestures with equivalent gesture 

images at 44% similarity. The PC-based sign 

language translator uses machine learning for 

wider accessibility, however, it has limited 

matching accuracy. Furthermore, [8] discussed 

the use of image processing, specifically the 

Convolutional Neural Network (CNN), to 

convert sign language into speech or text. The 

authors have developed a sign detector for 

Indian Sign Language (ISL) to recognize 

numbers 1-10 and plan to extend it to recognize 

other gestures and expressions. This approach is 

widely accepted because of its potential in 

removing language barriers for those with 

hearing impairments, as widely accepted as the 

system is, it’s had issues recognizing more 

complex sign language gestures and the need for 

further testing and refinement. Similarly, [9] 

proposed the need for a product that can 

transform sign language into a form that can be 

understood by common people. The authors 

suggest using Raspberry Pi, gesture recognition, 

and image detection with Python to achieve this 

goal. This approach makes sign language more 

accessible to a wider audience.  

An approach for real-time recognition of Indian 

Sign Language using CNN and neural networks 

was presented by [10], with the aim of 

improving communication for people with 

hearing and speaking disabilities. The system’s 

potential lies in its ability to provide a means of 

communication without the need for a 

translator, but is specific to Indian Sign 

Language. Similarly, [11] proposed a system that 

aims to improve the inclusion of hearing-

impaired people by converting speech input 

into text and translating it into sign language 

using natural language processing and machine 

learning. The system is based on Python. The 

system has potential to increase knowledge and 

awareness of sign language and to facilitate 

communication for hearing-impaired individuals 

but may need further development and 

refinement to improve accuracy and usability. 

[12] Proposed an approach to improve 

communication between deaf and mute 

individuals and those without communication 

impairments. The approach involves training a 

model to recognize common sentences 

exchanged between buyers and sellers using 

hand gestures and Google Teachable Machine. 
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The approach uses technology to bridge 

communication gaps and promote inclusivity 

cannot account for individual variability in 

gestures and language use. 

A sign language translator system that uses 

American Sign Language (ASL) dataset for 

recognizing the sign language alphabet and 

converting it into text to speech was proposed 

by [13]. The system achieves a 74% accuracy 

rate and can also be helpful for blind people. 

The system’s hand-tracking techniques and its 

ability to bridge the communication gap 

between deaf-mute individuals and others 

makes it powerful. It needs improvement in 

accuracy and the system only recognizes ASL. 

[14] proposed a system for real-time American 

Sign Language perception using a combination 

of Convolutional Neural Networks and the You 

Only Look Once (YOLO) algorithm. The 

system improved communication between 

hearing and hearing-impaired individuals by 

accurately recognizing and translating sign 

language gestures. The system uses advanced 

machine learning techniques (CNN and 

YOLO), but may not be accurate in terms of 

the hand tracking and segmentation algorithms.  

From all the aforementioned studies, majority 

of the studies employed CNN but its pre-

trained architectures like VGG, ResNet and 

MobileNet were not explored. Also little work 

was done on mobile app development for sign 

language translation to text for easier 

communication between people living with 

disability and others that hear and speak. This is 

the major gap this study aimed to fill by 

exploring difference architectures of CNN and 

use the best performing architecture to develop 

a mobile app that can be used on smartphones 

for easier communication. 

 

II.  MATERIALS AND METHODS 

The development of the system involves two 

phases, the first phase involves different stages 

of training and evaluating different CNN 

architectures and the second phase involves 

development of the mobile app. These stages 

including the deep learning technique 

methodology and deployment are represented 

in Figure 1, which shows the data acquisition, 

preprocessing, training and evaluation and 

deployment. 

A. Data Acquisition 

The dataset was gotten from Kaggle as used 

by Rahman et al., [15], the dataset composed 

of images of hands performing various ASL 

gestures or signs. But then, to ensure locality 

of the study and improve learning of the 

model and further reduce overfitting, over 

2000 local dataset were additionally acquired, 

that featured dark skinned hands doing the 

sign language. These hand gestures represent 

all the letters and numbers in the American 

Sign Language. Each sample in the dataset is 

associated with a corresponding label 

indicating the ASL sign it represents. In order 

to localize the system, these local dataset were 

locally acquired by the researchers. Some of 

the images present in the dataset is shown in 

Figure 2.  

The summary of the dataset used in this study 

is presented in Table 1 for clarification and 

reference. As this showed the resolution of 

each image present the dataset to be 64 x 64 

pixel, with Jpeg extension, containing a total 

of 9500 images, with each class (alphabet, 

number, words and phrases) having 200 

images and the color format is RBG. This 

helps in ensuring the dataset is well described 

for better understanding. 

 



110 

 

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Overview of image recognition methodology 

 

 

Figure 2: Overview of sign languages [15] 

 
Table 1: Dataset description 

Specification Value 

Resolution 64 by 64 

Extension .jpg 

Number of images 9500 

Number of classes 36 

Number of images per 

class 

200 

File size 10kb – 20kb 

Channel 3 (RGB) 
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B. Data pre-processing  

This stage of the system development is to 

ensure the dataset is well process for better 

performance of the model. This study employed 

some preprocessing techniques like Data 

cleaning, Data augmentation  

i. Data Cleaning: involves removing any 

irrelevant data, such as images with poor 

lighting or unclear hand gestures. The 

images with incomplete or incorrect 

annotations were removed. Data 

normalization involves scaling the data so 

that all the images have the same 

resolution, frame rate, and color space. 

This ensures that the model is not biased 

towards any particular image quality or 

format. 

ii. Data augmentation: involves generating 

additional training data by applying random 

transformations to the existing images, 

such as flipping, rotating, and zooming. 

This helps to increase the size of the 

training set and improve the model's ability 

to generalize to new data. Techniques such 

as random cropping and color jittering 

were applied to further enhance the 

diversity of the training data. 

C. CNN model for recognition 

This study employed VGG-16 as the 

classification algorithm after series of 

experimentation have been carried on using 

other architectures of CNN like ResNet and 

MobileNet and the study found out the VGG-

16 gave the best performance accuracy. VGG-

16, developed by the Visual Geometry Group 

and Google DeepMind, is a convolutional 

neural network model proposed for image 

recognition tasks. This model has 16 layers and 

has a reputation for being very effective in the 

ImageNet Large Scale Visual Recognition 

Challenge. The study applied transfer learning, 

using the VGG16 model's learned features as a 

starting point for the sign language classification 

task. This is a common and effective strategy 

for deep learning, especially when the available 

dataset is relatively small. 

This pre-trained model was modified so as to 

avoid and cater for domain mismatch which is 

one of the major drawback of employing 

transfer learning technique. The modification 

done on the original VGG-16 are highlighted as 

follows:  

i. Classifier_vgg16.output: Here, the study used 

the output of the VGG16 model as the 

input to the custom layers. This output 

will contain the learned feature maps 

from the VGG16 model. 

ii. Flatten (): This layer is used to convert the 

multi-dimensional input into a single 

dimension array. It prepares the vector 

for input into the dense, feed-forward 

neural network layers that follow. 

iii.  Dense (units=256, activation='relu'): This is 

a fully connected layer where each input 

node is connected to each output node. 

The study specified 256 units, meaning 

there are 256 output nodes. The 

activation function is 'relu', or Rectified 

Linear Unit, which will output the input 

directly if it is positive, otherwise, it will 

output zero. 

iv.  Dropout (0.6): Dropout is a regularization 

technique for reducing overfitting in 

neural networks. During training, 60% of 

the units in the previous layer will be 

randomly ignored. This helps to make 

sure the network doesn't rely too heavily 

on any single (or small group of) 

neuron(s). 

v. Dense (units=36, activation='softmax'): This 

is the final layer of our network. It has 36 
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output nodes, which corresponds to the 

number of classes we have in your 

dataset. The 'softmax' activation function 

is generally used in the output layer of a 

network for multi-class classification 

problems. It gives the probabilities of the 

input being in each class, and all the 

probabilities will sum to 1. 

Finally, the VGG-16 model was compiled using 

'adam' as the optimizer, 

'categorical_crossentropy' as the loss function 

(which is suitable for multi-class classification), 

and 'accuracy' as performance metric. The 

Adam optimizer is a popular choice because it 

combines the best properties of the AdaGrad 

and RMSProp optimization algorithms to 

provide an optimization algorithm that can  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

handle sparse gradients on noisy problems. 

'Categorical_crossentropy' loss function is used 

as a loss function for classes greater than 2. It 

expects the labels to be provided in a one_hot 

representation i.e., For N classes, each label 

should be a N dimensional vector where only 

one element is 1 (indicating the correct class), 

and the rest are 0. The 'accuracy' metric 

computes the accuracy rate, which is the 

proportion of correct predictions to the target 

size. 

The code snippet for training of the model is 

represented in Figure 3 which show the code 

for splitting the whole dataset to training and 

testing, and shows the output of the total 

number of images used for training and 

evaluating the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Code snippet for splitting the dataset 



113 

 

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES) 

 
 

D. Model performance evaluation 

The model was evaluated to ascertain its 

performance before it as integrated into the 

frontend for functionality. This study employed 

the common evaluation matric which is 

accuracy, this metrics is mathematically 

represented as given in (1) 

                (1) 

E. Frontend development 

The project frontend is built on Flutter. Written 

in the Dart Programming Language. Flutter is 

an open source UI framework developed by 

Google for creating natively compiled 

applications for mobile, web and desktop. It is 

particularly renowned for its efficiency in 

building high-quality, visually appealing user 

interfaces. Flutter utilizes a unique approach 

called “widget” architecture, where user 

interface components are represented as 

widgets. These widgets are customizable and 

can be composed together to create complex 

user interfaces. Flutter provides a rich set of 

pre-designed widgets that cover everything from 

basic buttons to advanced layouts, making it 

easier to build engaging and consistent user 

experiences. 

To set up a Flutter project, the following steps 

were employed: 

i. Installed Flutter Dependencies, as it has 

some platform-specific dependencies. 

ii. Created a new Flutter project in a terminal 

by navigating to the directory to create the 

Flutter project. 

iii. Ran the command ‘flutter create 

motion_verse’ to generate a new Flutter 

project. 

iv. Used the ‘cd’ command to navigate into the 

newly created project directory ‘cd 

motion_verse’. 

v. Ran the application by connecting a 

physical device. In the terminal, ran ‘flutter 

run’ to compile and launch the Flutter 

application on the connected physical 

device. 

vi. Itched to the ‘lib/main.dart’ file to start 

building the application. 

Figure 4 shows how the trained and evaluated 

model was integrated into the frontend for 

userability. This is done using the function 

‘runModel’ that takes in the Camera Image 

parameter. The ‘runModelOnFrame’ function is an 

in-built TensorFlow Lite function that starts by 

loading the pre-trained model. It is designed to 

perform inference on a selected image frame. 

The function is responsible for loading the 

model, pre-processing the input image, running 

the inference, and returning the output. This 

function got called from other parts of the 

application whenever image inference was 

required, reducing code duplication. 

Figure 5 shows how the ‘loadModel’ function was 

responsible for loading the pre-trained model 

onto the device’s memory. It takes parameters 

of the model and label, the function ensures 

that necessary memory space is reserved to 

store the parameters and intermediate 

computation results. The model parameter takes 

in the model file that contains the model’s 

architecture and the trained weights. The loaded 

interpreter and tensor details loaded on the 

application’s initialization or when the model is 

required for inference 
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Figure 4: Code snippet for model integration 

 

 

 

 

 

 

 

 

 

Figure 5: Snippet of the model and label 
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F. Implementation and experimental 

setup 

The study was implemented on Visual Studio 

Code (VS Code) - a versatile and widely-used 

source code editor known for its lightweight 

design and powerful features. Being a system 

built on deep learning model, Tensor Flow was 

employed which enabled the creation and 

training of deep learning models to recognize 

and translate sign language gestures into text or 

speech. ImagePro was also used, this mobile 

application was used to gather the local dataset. 

And Matplotlib is the library that provides 

powerful visualization capabilities that can help 

in understanding the data. 

III. RESULTS AND DISCUSSION 

This section provides the reader with the 

experimental results obtained while training 

different CNN architectures to select the best 

for integration into the mobile app and the 

interfaces of the developed sign language 

translation mobile app. 

A. Experimental results of the CNN 

models 

During the training of the three models, their 

average training and validation accuracies and 

losses were obtained so as to show how well  

 

 

 

 

 

 

 

 

trained they were. This is represented in Table 2 

where the three models’ training and validation 

average accuracy and loss were presented. 

From Table 2, it would be observed that VGG-

16 had the best average training and validation 

accuracies of 0.8946 and 0.9556 respectively, 

while ResNet gave the lowest as regards the 

aforementioned metrics, the drastic increase in 

ResNet validation loss and very low validation 

accuracy shows it is not well performing at all. 

ResNet training loss is quite high (1.9929), and 

the validation loss increased significantly (from 

14.6348 to 493.4237) during training. These 

results indicate that the model did not perform 

well and struggled to learn the underlying 

patterns in the data. The extremely low 

validation accuracy further suggests that the 

model failed to generalize to unseen data. The 

same thing is applicable to the average training 

and validation loss. From this, it obviously 

implies that VGG-16 was well trained and gave 

confirming performance accuracy. 

The result presented in Table 2 could be 

buttress with Figure 6 that shows the training 

accuracies and losses obtained while training the 

VGG-16 model. This shows the movement in 

the accuracies and losses over 40 epochs that 

the model was trained with. 

 

 

 

 

 

 

 

 

 

Table 2: Comparison of CNN models’ training results 

Metrics VGG-16 ResNet MobileNet 

Training Loss 0.3825 1.9929 0.8354 

Training Accuracy 0.8946 0.6298 0.7712 

Validation Loss 0.1582 493.4237 0.2109 

Validation Accuracy 0.9556 0.0343 0.9546 
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These models were then tested on the testing 

set for evaluation. The Experimental result of 

the models on the testing set is presented in 

Table 3 for clarification. 

As shown in Table 3, VGG-16 and MobileNet 

models performed well on both the test and 

evaluation images with average accuracies of 

95.6, 97.7, 95.5 and 96.6 respectively, achieving 

high accuracy and demonstrating good 

generalization. On the other hand, the ResNet 

model showed poor performance, with very low 

accuracy on both datasets. Therefore, the 

VGG16 and MobileNet models are more 

reliable for making accurate predictions on 

unseen images compared to the ResNet model. 

From the result shown in Table 2 and 3, it 

obviously implies that VGG-16 was the best 

performing model among the three (3) CNN 

models experimented.  

B. Sign language translator mobile app 

deployment 

Figure 7 delves into the introduction of the key 

details of the application where users see 

illustrations in carousel format showing that the 

application helps translate sign language. It 

serves as a central hub for users to engage with 

the application’s core features. The home screen 

features a carousel of illustrative content, 

strategically positioned to capture user’s 

attention upon launch. The carousel design 

introduces a dynamic element, engaging users 

with visually appealing graphics that align with 

the application’s theme and purpose. There are 

other significant elements on the home screen 

that contribute to enriched user experience: the 

light-dark mode switch button and a dedicated 

section showcasing the application’s 

functionalities. The inclusion of a light dark-

mode switch button on the home screen 

provides users with flexibility to tailor the 

application’s appearance to their comfort. All 

the home screen elements collectively enhance 

the user experience and provide valuable 

insights into the application’s capabilities. 

Figure 8 shows the functionality of the camera 

screen that enable users to translate sign 

language gestures representing numbers (0-9) 

and (a-z). This feature showcases real-time 

recognition and translation through camera 

streaming. The camera screen harnesses 

advanced computer vision and machine learning 

technologies to process real-time video input 

from the device’s camera. It employs 

convolutional neural network techniques to 

detect and interpret users’ sign language  

 

Figure 6: VGG-16 Training accuracies 

and losses  
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gestures, particularly those corresponding to 

numbers and alphabetic characters. When a 

hand gesture matches a recognized sign for a 

number or alphabetic character, the screen 

overlays a board showing possible recognitions 

and their accuracy percentage as recognized 

using the developed model. The translated 

content is displayed beneath the camera feed 

allowing users to see the recognized sign and its 

corresponding translation simultaneously as 

shown in Figure 9. The screen is designed to be 

intuitive and unobtrusive, allowing users to 

focus on their hand gestures and translated 

content. 

 

Table 3: Comparison of CNN models’ testing results 

Metrics VGG-16 ResNet MobileNet 

Accuracy of test images. 95.556% 3.426% 95.463% 

Accuracy for Evaluation Images. 97.685% 2.13% 96.574% 

 

 

Figure 7: The Mobile app Home Screen 

 

 

Figure 8: The mobile-app 

(Motion-verse) Camera Screen 
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Figure 9 shows the implementation of the sign 

language dictionary feature in the application. 

This feature in the application provides a 

comprehensive collection of sign languages 

corresponding to A-Z and 0-9 complete with 

images and details. The data is stored in a 

database, and the dictionary offers a search 

functionality for users to quickly find specific 

signs. The architecture, database integration, 

user experience, search functionality is 

discussed. The sign language dictionary 

leverages the Firebase database to efficiently 

store and manage the extensive collection of 

sign languages. The database capabilities ensure  

 

 

 

 

 

 

 

 

 

 

 

IV.  CONCLUSION  

This research has effectively addressed the 

communication challenges experienced by the 

deaf and hard-of-hearing community, stemming 

from the lack of sign language proficiency 

among non-sign language users. The central 

objective of creating a mobile-based sign 

language translator using convolutional neural 

networks (CNNs) technique has been 

successfully achieved. The significance of this 

seamless updates and synchronization across 

devices. The search functionality ensures that 

users can search for specific sign languages by 

entering characters, numbers, and keywords 

into the search bar. As users type their search 

queries, the dictionary dynamically filters entries 

to display relevant matches in real time. Users 

can browse sign languages categorized by 

alphabetic characters. Clicking on a specific sign 

language entry navigates users to a dedicated 

screen displaying comprehensive details 

including images depicting the sign language 

gesture 

 

 

 

 

 

 

 

 

 

 

 

 

project extends to its potential to bridge the 
communication gap between sign language 
users and the broader community. By 
harnessing the capabilities of Convolutional 
Neural Networks and Natural Language 
Processing, we have managed to develop a real-
time and precise sign language translation 
system that operates seamlessly across both 
Android and iOS platforms. Future work(s) 
should focus on inclusion of diverse and 
extensive collection of English words and 

 

Figure 9: Motion-verse dictionary screen 
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expanding the system's scope to be able to 
translate multiple sign languages would 
significantly enhance its utility, while the present 
version concentrates on Android devices, it is 
advisable to extend the availability of the sign 
language translator to iOS users. 
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