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Abstract This article considered integration of Artificial Intelligence (AI) and Photovoltaic (PV) 

technology, with emphasis on integral effects towards optimizing electrical energy generation in 

seamless in existing grids. Focusses are AI's pivotal role in forecasting, troubleshooting, predictive 

maintenance, and overall system management. AI's precision enhances grid integration, schedules 

energy efficiently, and mitigates power fluctuations, thereby promoting grid stability. It proves 

instrumental in the swift identification and resolution of potential malfunctions, streamlining 

maintenance processes, and reducing downtime for a more reliable PV system. The 

implementation of predictive maintenance introduces a proactive dimension, predicting 

component failures in advance to minimize disruptions and extend system lifespan. Optimal 

management, encompassing Maximum Power Point Tracking (MPPT) and battery storage 

optimization, utilizes AI algorithms to dynamically adjust operational parameters, maximizing 

energy generation and grid stability. Despite challenges such as data availability, computational cost, 

and algorithm interpretability, AI presents vast opportunities in the PV domain. Tailored AI 

solutions for specific PV systems promise heightened accuracy and effectiveness. Furthermore, 

edge computing and decentralization offer reduced latency, enhanced data privacy, and 

decentralized decision-making. The seamless integration with other renewable energy sources 

facilitates coordinated grid management and maximizes overall renewable energy utilization. 

Nevertheless, AI emerges as a transformative force propelling PV system towards heightened 

efficiency, reliability, and cost-effectiveness with a view to unlocking the full potential of solar 

energy for a sustainable future. 

Keywords: Anomaly detection, Artificial intelligence, Fault diagnosis, Forecasting, Grid integration, 
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I. Introduction 

The world is at crucial juncture in energy 

trajectory, grappling with the urgent need for a 

transition towards cleaner and more sustainable 

sources [1-4]. The escalating demand for clean 

energy has propelled a paradigm shift, steering 

nations away from conventional fossil fuels  

 

 

 

 

 

towards renewable sources [5-8]. In this 

transformative landscape, Photovoltaic (PV) 

technology stands out as a pivotal player, 

holding the promise of harnessing the 

inexhaustible power of the sun to meet our 

escalating energy needs. However, the journey 

towards fully optimizing PV systems is riddled 

with challenges that demand innovative 

solutions. Key among these challenges are 

imperative for accurate power generation 

forecasting, real-time monitoring, and intelligent 

optimization. It is at this intersection of 

renewable energy and advanced technology that 
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Artificial Intelligence (AI) emerges as a game-

changing solution, offering a suite of powerful 

tools that have the potential to unlock the full 

capabilities of PV technology. The 21st century 

has witnessed an unprecedented global push for 

clean energy solutions. Climate change concerns, 

coupled with the realization of the finite nature 

of fossil fuels, have spurred nations, industries, 

and researchers to explore alternative, 

sustainable sources of energy. Among these, 

solar energy, harnessed through Photovoltaic 

technology, has risen to prominence due to its 

abundance and environmental friendliness [9-

12]. The pressing need to reduce greenhouse gas 

emissions and mitigate the impacts of climate 

change has driven a collective effort towards 

embracing renewable energy sources. 

Governments worldwide are enacting policies to 

incentivize the adoption of clean energy 

technologies, with solar power at the forefront 

of these initiatives [13-16]. The development and 

implementation of efficient PV systems have 

become integral to achieving ambitious 

renewable energy targets and creating a more 

sustainable future. While the potential of PV 

technology is immense, realizing its full 

capabilities is not without its share of challenges. 

Among these challenges, accurate power 

generation forecasting takes center stage [17, 18]. 

The inherent variability in solar radiation, 

influenced by factors such as weather patterns 

and time of day, poses a significant hurdle in 

precisely predicting the energy output of PV 

systems. This unpredictability can lead to 

inefficiencies in energy distribution and grid 

management. Real-time monitoring is another 

critical aspect that demands attention. The 

dynamic nature of environmental conditions and 

the intricate interplay of components within PV 

systems necessitate constant vigilance [19-22]. 

Monitoring becomes imperative not only for 

maximizing efficiency but also for identifying 

and addressing potential issues promptly, thus 

minimizing downtime and optimizing overall 

system performance. Intelligent optimization is 

the third pillar in the trifecta of challenges facing 

the PV industry [23]. As solar energy production 

is subject to fluctuations, ensuring the 

continuous and optimal operation of PV systems 

requires advanced strategies. Traditional 

approaches fall short in adapting to the dynamic 

nature of environmental conditions, 

necessitating innovative solutions that can 

dynamically adjust system parameters to 

maximize energy output. 

In this landscape of challenges, AI emerges as a 

transformative force poised to revolutionize the 

field of PV technology [24, 25]. AI, with its 

capacity to process vast amounts of data, learn 

patterns, and make intelligent decisions, presents 

a suite of tools perfectly suited to address the 

intricacies of optimizing PV systems. The fusion 

of AI and PV technology holds the potential to 

address the challenges of accurate forecasting, 

real-time monitoring, and intelligent 

optimization [18, 26, 27]. Machine learning 

algorithms, a subset of AI, can analyze historical 

data, weather patterns, and system parameters to 

predict solar irradiance with unprecedented 

accuracy. This capability not only aids in energy 

scheduling but also ensures optimized grid 

integration by mitigating power fluctuations. 

Real-time monitoring, a cornerstone of efficient 

PV system operation, benefits immensely from 

AI applications. The ability of AI algorithms to 

analyze vast streams of data from sensors in real-

time enables the early detection of anomalies 

and deviations in system performance [28]. This 

proactive approach empowers operators to 

swiftly diagnose issues, perform necessary 

maintenance, and prevent potential power losses 

or equipment damage. Intelligent optimization, 
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the linchpin in the quest for efficient and reliable 

PV systems, finds a natural ally in AI. Machine 

learning algorithms can dynamically adjust 

operational parameters, ensuring that PV 

systems operate at their peak power output 

under varying environmental conditions. This 

not only maximizes energy generation but also 

enhances the overall lifespan and efficiency of 

the PV infrastructure as shown in figure 1.  

This comprehensive review aims to delve into 

the symbiotic relationship between AI and PV 

technology. By exploring the challenges in PV 

system optimization and the potential of AI 

solutions, the review seeks to provide a nuanced 

understanding of how these two realms intersect 

and complement each other. The overarching 

objective is to shed light on the transformative 

role of AI in unlocking full potential of PV 

technology and propelling the world towards a 

more sustainable and efficient energy future.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It will meticulously examine the applications of  

AI in various facets of PV systems, ranging from  

forecasting and anomaly detection to fault 

diagnosis, predictive maintenance, and optimal 

management. By dissecting each application 

area, the review aims to highlight the Specific 

contributions of AI and elucidate how these 

applications collectively contribute to the 

enhanced performance and reliability of PV 

systems. Furthermore, the review will scrutinize 

the challenges associated with the integration of 

AI in PV systems, such as data availability and 

quality, computational costs, and interpretability. 

in tandem, it will explore the myriad 

opportunities that arise from overcoming these 

challenges, including the development of 

personalized AI solutions, the integration of AI 

with other renewable energy sources, and the 

potential for edge computing and 

decentralization in PV systems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Architecture of PV System [29] 
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A. Artificial Intelligence and Photovoltaic 

System 

AI has emerged as a transformative force in the 

field of PV technology, offering a range of 

applications that address critical challenges, 

enhanced efficiency, reliability, and overall 

performance of PV system. This section delves 

into key areas where AI, primarily through 

Machine Learning (ML) techniques, plays a 

pivotal role in optimizing PV systems. 

i. Forecasting 

Precise prediction of solar radiation is 

fundamental for optimizing grid integration and 

energy scheduling in PV systems. Figure 2 shows 

AI models which excel in this domain by 

incorporating diverse data sources, including 

weather data and historical observations, to 

predict solar irradiance with exceptional 

accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

These models leverage advanced algorithms to 

discern patterns and correlations, enabling them 

to provide real-time and future projections of 

solar radiation levels. Weather conditions 

significantly influence solar irradiance, and AI 

models take advantage of this relationship [18, 

31-33]. Historical weather data, including cloud 

cover, humidity, and atmospheric conditions, are 

integrated into the models to improve the 

accuracy of solar irradiance forecasts. This data-

driven approach allows for a dynamic 

understanding of the environment, facilitating 

more precise predictions under varying weather 

scenarios. ML algorithms, particularly those 

under the umbrella of regression and neural 

networks, are employed to learn from historical 

solar irradiance patterns [34, 35]. These models 

adapt and evolve based on past observations, 

continuously improving their predictive 

capabilities. The result is a forecasting tool that 

not only considers current environmental 

conditions but also learns and adjusts based on 

the historical performance of the PV system. 

Accurate solar irradiance forecasting mitigates 

power fluctuations in PV systems. By providing 

real-time insights into expected solar radiation 

levels, AI-driven forecasts enable optimal 

utilization of generated energy [36, 37]. This, in 

turn, allows for efficient energy scheduling, 

minimizing the effect of changes in solar-

irradiance on grid and contributing to grid 

stability. Accurate estimation of PV power 

output is paramount for grid stability and 

effective participation in energy markets. AI 

models leverage a combination of historical 

production data, weather forecasts, and system 

operating parameters to generate reliable power 

generation forecasts. These forecasts serve as a 

foundation for strategic decision-making, 

ensuring that energy production meets demand 

and grid operations remain stable [38, 39]. AI 

models analyze historical production data from 

PV systems to understand performance patterns 

and trends. By identifying correlations between 

various parameters, these models develop a 

nuanced understanding of how the system 

responds to different conditions. This historical 

 

Figure 2: Application of artificial 
intelligence for power system [30] 
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context enhances the accuracy of power 

generation forecasts, particularly in scenarios 

where the system operates under similar 

conditions to those observed in the past. 

Incorporating real-time weather forecasts into 

AI models allows for a more dynamic prediction 

of power generation [40-43]. Weather conditions 

influence the efficiency of solar panels, affecting 

the conversion of sunlight into electricity. By 

integrating weather forecasts with system 

parameters such as panel orientation and tilt, AI 

models can simulate and predict power 

generation under specific environmental 

circumstances. Accurate power generation 

forecasts contribute to grid stability by ensuring 

a balance between energy supply and demand. 

Additionally, these forecasts empower PV 

system operators to participate more effectively 

in energy markets. By aligning energy production 

with market demand, operators can optimize 

revenue generation and enhance the economic 

viability of PV systems. 

ii. Anomaly detection and fault 

diagnosis 

AI algorithms play crucial role in early detection 

of performance deviations within PV system. 

These deviations, often indicative of potential 

malfunctions, can lead to power losses and 

equipment damage if not addressed promptly. 

AI-driven anomaly detection provides a 

proactive approach to system monitoring, 

enabling swift diagnostics and maintenance [44]. 

AI models analyze vast amounts of sensor data 

generated by various components within the PV 

system. This includes data from PV cells, 

inverters, temperature sensors, and other 

monitoring devices. By scrutinizing this data in 

real-time, AI algorithms identify patterns and 

anomalies that may signal potential issues in the 

system's performance. The early detection of 

anomalies allows for proactive diagnostics and 

maintenance. System operators receive timely 

alerts, enabling them to investigate and address 

potential issues before they escalate [45]. This 

proactive approach minimizes downtime, 

reduces the risk of power losses, and extends the 

overall lifespan of the PV system. 

In addition to detecting anomalies, AI models 

are employed for fault classification and location 

within PV systems [46]. Trained on labeled 

datasets that include various fault scenarios, 

these models can accurately identify specific 

faults and pinpoint their location. This 

streamlined approach expedites maintenance 

processes, reduces downtime, and enhances 

overall system reliability [47]. The effectiveness 

of fault classification models relies on the 

availability of labeled datasets. These datasets 

include instances of known faults, allowing the 

AI model to learn and recognize patterns 

associated with specific issues. As the model 

encounters new data, it can classify and 

categorize faults based on its training, enabling 

accurate identification in real-world scenarios. 

Once a fault is identified and classified, AI 

systems provide valuable information to 

streamline maintenance processes. By 

pinpointing the location of the fault, 

maintenance teams can focus their efforts on 

specific components or subsystems, reducing the 

time and resources required for troubleshooting. 

This targeted approach contributes to efficient 

fault resolution and system optimization as 

documented in Figure 3.  

iii. Predictive Maintenance 

Predictive maintenance, a proactive approach 

enabled by AI, revolutionizes the way PV 

systems are managed by anticipating component 

failures before they occur. AI models, fueled by 

historical maintenance data and operational 

parameters, explore machine-learning algorithms  
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to predict likelihood of failures in specific 

components [49]. 

Through continuous learning, these models 

become adept at recognizing patterns that 

precede component failures, such as 

deteriorating performance metrics or abnormal 

operating conditions. By analyzing the historical 

performance of components within the PV 

system, AI can identify subtle signs of wear and 

tear that may elude traditional inspection 

methods. The significance of anticipating 

component failures lies in its potential to 

minimize disruptions in energy production. 

Operators can schedule maintenance activities 

precisely when they are needed, reducing 

downtime and preventing unexpected failures 

that could compromise overall efficiency of PV 

system. 

AI's role in predictive maintenance extends 

beyond simply anticipating component failures. 

It also facilitates the optimization of 

maintenance schedules based on the actual 

health of system components rather than rigid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

time intervals. Traditional maintenance 

schedules often rely on fixed time intervals, 

leading to unnecessary interventions and 

increased operational costs [50-52]. AI models, 

by providing insights into the real-time health of 

components, enable operators to schedule 

maintenance activities precisely when they are 

needed. This dynamic approach not only reduces 

unnecessary downtime but also contributes to 

significant cost savings by avoiding premature 

replacements and ensuring that maintenance 

efforts are directed where they are most needed. 

The integration of AI in predictive maintenance 

aligns with the broader goal of creating more 

sustainable and cost-effective PV systems [53]. 

By maximizing the operational life of 

components and minimizing unnecessary 

maintenance interventions, AI contributes to the 

overall economic viability of solar energy. 

iv. Optimal Management 

One of the critical aspects of optimizing PV 

systems is the dynamic adjustment of operating 

parameters to ensure that the system operates at 

 

Fig. 3: Fuzzy Logic Fault Diagnosis Architecture [48] 
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its maximum power point under varying 

environmental conditions [54-56]. This process, 

known as MPPT is pivotal for maximizing 

energy generation and enhancing the overall 

efficiency of PV systems. AI algorithms, 

particularly those rooted in reinforcement 

learning and control theory, excel in the 

optimization of operating parameters for MPPT 

[57]. These algorithms continuously adapt to 

changing environmental conditions, learning 

optimal strategies for adjusting parameters such 

as the tilt angle of solar panels or the voltage-

current characteristics of the system. By 

employing AI for MPPT, PV systems can 

achieve higher energy yields, especially under 

conditions where traditional fixed-parameter 

approaches may fall short. The dynamic 

adaptation facilitated by AI ensures that the 

system operates at its peak efficiency, regardless 

of variations in solar radiation, temperature, or 

other environmental factors [58].  

As the integration of energy storage systems, 

particularly batteries, becomes increasingly  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

prevalent in PV systems, AI plays a pivotal role  

in optimizing the charging and discharging 

schedules of these storage units [59]. Battery 

storage optimization involves balancing demand 

and supply of energy, optimizing both grid strain 

and self-consumption. AI algorithms, leveraging 

techniques such as optimization algorithms and 

machine learning, can analyze real-time data 

from the PV system, grid conditions, and energy 

demand patterns to determine the optimal 

charging and discharging schedules for the 

batteries. This dynamic optimization ensures 

that the battery storage system operates 

efficiently, contributing to grid stability and the 

overall reliability of the PV system. Moreover, 

AI's ability to adapt to changing conditions and 

learn from historical data allows for personalized 

optimization strategies tailored to the specific 

characteristics of the PV system and the energy 

consumption patterns of the end-users [60]. This 

personalized approach enhances overall 

efficiency of energy storage system leading to 

improved economic and environmental 

outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Maximum Power Tracking Adaptive Optimization Technique for Off‑Grid 
Photovoltaic Systems[61] 
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B. Benefits of AI IN PV Systems 

The integration of AI in PV systems brings forth 

a myriad of benefits that collectively contribute 

to the advancement of solar energy technologies. 

These benefits include: 

AI applications in forecasting, optimal 

management, and predictive maintenance 

contribute to improved system efficiency and 

higher energy yields. Accurate forecasting 

ensures that the PV system operates optimally 

under varying environmental conditions, while 

optimal management and predictive 

maintenance strategies enhance the overall 

performance of system components. The result 

is a more efficient and productive PV system 

[62]. Accurate forecasting and optimal 

management facilitated by AI enhance the 

integration of PV systems with the grid. By 

providing precise predictions of energy 

generation and dynamically adjusting operational 

parameters, AI helps utilities and grid operators 

manage the variability of solar power [63]. This, 

in turn, contributes to grid stability and 

reliability, supporting the seamless integration of 

solar energy into existing power infrastructures. 

Predictive maintenance enabled by AI allows for 

proactive identification of potential issues before 

they escalate into failures [64]. This proactive 

approach minimizes downtime, prevents power 

losses, and extends the operational lifespan of 

components. Additionally, by optimizing 

maintenance schedules based on actual 

component health, AI contributes to significant 

cost savings by avoiding unnecessary 

interventions and maximizing the economic 

viability of PV systems [65]. The adaptability of 

AI algorithms allows for development of 

personalized solutions tailored to specific 

characteristic of individual PV system. Whether 

it's forecasting, anomaly detection, or 

optimization, AI can be fine-tuned to account 

for unique environmental conditions, system 

configurations, and user preferences. This level 

of personalization enhances the flexibility and 

applicability of AI in diverse PV installations. By 

improving the efficiency and reliability of PV 

systems, AI contributes directly to the broader 

goals of sustainability and environmental 

conservation. The increased adoption of solar 

energy, coupled with AI-driven enhancements, 

accelerates the transition towards a cleaner and 

more sustainable energy future, reducing reliance 

on fossil fuels and mitigating the impacts of 

climate change. 

i. Challenges in implementing AI in PV 

systems 

While the benefits of AI in PV systems are 

substantial, the implementation of AI also poses 

several challenges that need to be addressed for 

widespread adoption. These challenges include; 

the effectiveness of AI models is highly 

dependent on the availability and quality of data. 

Training reliable AI models requires large 

datasets specific to different PV systems and 

operating environments. Ensuring that these 

datasets are comprehensive, representative, and 

free from biases is crucial for the accurate 

learning and prediction capabilities of AI 

algorithms [66]. Implementing complex AI 

algorithms may demand advanced hardware and 

sophisticated network infrastructure, leading to 

increased computational costs. Furthermore, the 

latency introduced by these algorithms could 

pose challenges for real-time decision-making, 

especially in applications requiring immediate 

responses, such as anomaly detection or grid 

management [67]. Understanding how AI 

algorithms arrive at their conclusions is 

paramount, especially in critical applications like 

fault diagnosis or anomaly detection. 
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Transparent models and explainable AI 

techniques are essential for building trust among 

operators, engineers, and end-users. The lack of. 

 

 

 

 

 

 

 

 

 

 

 

 

ii. Opportunities for future research 

As the synergy between AI and PV systems 

continues to evolve, numerous opportunities for 

future research and development emerge. These 

opportunities include: 

The development of AI models tailored to 

specific PV systems and configurations holds 

immense potential for improving accuracy and 

effectiveness. Future research could focus on 

refining and customizing AI algorithms to 

address the unique characteristics of different 

installations, leading to more personalized and 

efficient solutions [65]. The deployment of AI 

algorithms on edge devices, closer to the PV 

system itself, presents opportunities to reduce 

latency and increase data privacy. Future 

research could explore the feasibility of 

implementing AI at the edge, enabling 

decentralized decision-making within PV 

systems and enhancing overall system resilience. 

AI's role in facilitating the seamless integration 

 

interpretability can hinder the acceptance and 

adoption of AI solutions in PV systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

of PV system with other renewable energy 

sources like wind remains an area ripe for 

exploration. Coordinated grid management and 

the optimization of diverse renewable sources 

could be a focus for future research, aiming to 

create more comprehensive and sustainable 

energy solutions. Continued research into 

advanced AI techniques, such as deep learning, 

reinforcement learning, and ensemble methods, 

could unlock new possibilities for optimizing PV 

systems [30]. Exploring the potential of these 

techniques in addressing specific challenges, 

such as interpretability and adaptability, could 

pave way for advancements. As AI becomes 

more integral to the operation and management 

of PV systems, ensuring robust cybersecurity 

measures becomes paramount. Future research 

could focus on developing secure AI algorithms, 

implementing encryption techniques, and 

establishing protocols to protect PV systems 

from potential cyber threats. 

The applications of AI in PV systems have 

ushered in a new era of efficiency, reliability, and 

 

Figure 2: Algorithm used for Fault Diagnostics in PV Systems [68] 
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sustainability. Across forecasting, anomaly 

detection, predictive maintenance, and optimal 

management, AI has proven to be a 

transformative force, enhancing the 

performance of PV systems and contributing to 

the global shift towards cleaner energy sources. 

The accuracy achieved in solar irradiance and 

power generation forecasting through AI models 

has not only improved grid integration but has 

also empowered utilities to make informed 

decisions in energy markets. Early detection of 

anomalies and fault diagnosis has minimized 

downtime and prevented power losses, leading 

to more robust and reliable PV systems. 

Predictive maintenance, driven by AI, has 

shifted the paradigm from reactive to proactive, 

anticipating component failures and optimizing 

maintenance schedules based on actual system 

health. This not only extends the lifespan of PV 

components but also contributes to substantial 

cost savings. The application of AI in optimal 

management, encompassing maximum power 

point tracking and battery storage optimization, 

has further maximized energy generation and 

grid stability. While challenges such as data 

availability, computational cost, and 

interpretability persist, they are outweighed by 

the substantial benefits AI brings to PV systems. 

Improved efficiency, enhanced grid integration, 

proactive maintenance, personalized solutions, 

and contributions to sustainability goals 

highlight the transformative impact of AI on the 

future of solar energy. 

As the field of AI continues to advance, future 

research directions hold the promise of 

addressing challenges and unlocking new 

opportunities. Tailoring AI solutions to specific 

PV configurations, exploring edge computing 

and decentralization, integrating with other 

renewable sources, advancing AI techniques, and 

ensuring cybersecurity will shape the next phase 

of AI-driven innovation in PV technology. In 

conclusion, the marriage of Artificial Intelligence 

and Photovoltaic systems not only propels us 

towards a more sustainable and efficient energy 

future but also represents a testament to the 

ever-evolving landscape of technological 

possibilities. 

 

C. Challenges and Opportunities 

The integration of AI and PV systems hold 

immense potential, yet it is not without its set of 

challenges. Simultaneously, these challenges 

present opportunities for innovation and 

improvement in the application of AI to 

enhance the efficiency and reliability of PV 

technology. 

i. Challenges 

a. Data availability and quality 

A primary challenge in integrating AI and PV 

systems is need for extensive, high-quality data. 

Training reliable AI models relies on datasets 

that are specific to different PV systems and 

their respective operating environments. 

Obtaining such datasets can be a cumbersome 

task, particularly when considering the diverse 

range of factors influencing PV system 

performance, including geographical location, 

climate conditions, and system configurations. 

Incomplete or inaccurate datasets can result in 

biased models and unreliable predictions. 

Inconsistent data quality may hinder the 

generalizability of AI models across different PV 

installations, limiting their effectiveness. 

Collaboration among industry stakeholders to 

share anonymized data, the development of 

standardized data collection protocols, and the 

creation of benchmark datasets can help address 

this challenge. Additionally, advancements in 

data augmentation techniques and synthetic data 

generation can supplement real-world datasets. 
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b. Computational cost and latency 

The implementation of complex AI algorithms 

in PV systems may demand advanced hardware 

and sophisticated network infrastructure. This 

poses challenges in terms of computational cost, 

as acquiring and maintaining the necessary 

computational resources can be expensive. 

Additionally, the latency introduced by these 

algorithms may hinder real-time decision-

making, particularly in applications where 

immediate responses are crucial. High 

computational costs could limit the scalability of 

AI applications in PV systems, making them 

economically impractical for certain installations. 

Latency issues may impact the ability of AI 

models to respond swiftly to real-time changes 

in system conditions. Continued advancements 

in hardware technology, such as the 

development of more energy-efficient 

processors and specialized hardware for AI 

tasks, can help mitigate computational costs. 

Additionally, optimizing algorithms for 

efficiency and exploring distributed computing 

solutions can address latency concerns. 

c. Interpretability and trust 

Understanding how AI algorithms arrive at their 

conclusions, often referred to as interpretability, 

is a critical challenge. The "black-box" nature of 

some AI models raises concerns about trust and 

acceptance, particularly in applications where the 

consequences of AI decisions are significant. 

Transparent models and explainable AI 

techniques are essential for building trust among 

stakeholders. Lack of interpretability may result 

in reluctance from system operators, engineers, 

and end-users to rely on AI-driven solutions. 

This reluctance can impede the adoption of AI 

in critical PV applications, such as fault diagnosis 

and anomaly detection. Research and 

development efforts should focus on creating AI 

models with inherent interpretability. Explorable 

and understandable models, coupled with the 

use of AI techniques, can assist in decision-

making process, fostering trust and acceptance. 

ii. Opportunities 

a. Personalized AI solutions 

The challenges associated with data availability 

and quality present an opportunity to develop 

personalized AI solutions. Tailoring AI models 

to specific PV systems and configurations can 

lead to improved accuracy and effectiveness. 

Personalized solutions account for the unique 

characteristics of individual installations, 

enhancing the adaptability and performance of 

AI-driven applications. Personalized AI 

solutions can optimize system performance 

based on the specific environmental conditions, 

geographical locations, and system 

configurations of PV installations. This 

customization ensures that AI models are finely 

tuned to deliver accurate predictions and 

recommendations tailored to the unique 

requirements of each system. Collaborative 

efforts between AI researchers, PV system 

manufacturers, and operators can facilitate the 

development of standardized approaches for 

tailoring AI models. This involves creating 

frameworks for customization and protocols for 

integrating personalized AI solutions into 

diverse PV installations. 

b. Edge computing and decentralization 

The challenges related to computational cost and 

latency provide an opportunity for the 

deployment of AI algorithms on edge devices in 

PV systems. Edge computing involves 

processing data closer to the source, reducing 

the need for centralized computational 
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resources. This approach not only addresses 

latency issues but also enhances data privacy by 

keeping sensitive information localized. 

Implementing AI at the edge enables real-time 

decision-making within PV systems, reducing 

the dependence on centralized servers and 

lowering latency. Additionally, edge computing 

enhances the security of AI-driven applications 

by limiting data transfer and processing closer to 

the point of generation. 

Research and development efforts should focus 

on creating lightweight AI models suitable for 

edge computing environments. The integration 

of edge devices with AI capabilities into PV 

systems requires collaboration between AI 

researchers, hardware manufacturers, and PV 

system integrators. 

Edge computing and the decentralization of PV 

systems have gained attention in recent years due 

to potentials to addressing various challenges in 

energy management and distribution networks. 

The integration of edge computing with PV 

systems offers a promising solution for 

decentralized energy management in ative 

distribution networks (ADNs)  [69]. This 

approach involves deploying edge nodes in 

small-scale transformer areas to address the 

uncertainty associated with PV generation [70]. 

Unlike traditional cloud-based systems, edge 

computing provides a decentralized scheme for 

computation at different levels, which is 

beneficial for the efficient management of PV 

systems [71]. Decentralized PV systems have 

demonstrated superior techno-economic 

performance compared to centralized systems, 

making them an attractive option for energy 

generation and distribution [72]. The decreasing 

cost of PV and battery systems, coupled with 

efforts to mitigate greenhouse gas emissions, has 

led to a trend of decentralization in energy 

systems [73]. Furthermore, decentralized battery 

and solar photovoltaic systems, organized in the 

form of autonomous low voltage DC nanogrids, 

present a low-cost and scalable solution for 

electrifying rural areas without access to the 

national grid [74]. 

The potential of decentralized photovoltaic 

systems extends to their ability to provide 

electricity directly to end-users, making them 

accessible to large part of world's population 

[75]. Additionally, integration of decentralized 

energy supply systems, like solar PV, biogas 

digesters, has been explored as a means of 

providing energy to rural areas [76]. High 

penetration of photovoltaic system, combined 

with communications networks, has increased 

potentials for PV inverters to support stability 

and performance of micro-grids, further 

emphasizing significance of decentralized PV 

systems in modern energy infrastructure [77]. In 

the context of edge computing, its benefits, such 

as low latency, privacy, and scalability, have been 

highlighted, making it a valuable technology for 

collaborative applications in the energy sector 

[78]. However, Industrial Internet of Things 

(IIoT) has paved the way for the integration of 

edge computing in the detection and perception 

of solar cells, showcasing the potential for 

advanced technological solutions in the 

photovoltaic industry [79]. Therefore, 

decentralization of photovoltaic systems, 

coupled with the integration of edge computing, 

presents a transformative approach to energy 

management and distribution. These 

advancements offer solutions for addressing 

uncertainties in photovoltaic generation, 

improving energy access in rural areas, and 

enhancing the overall stability and performance 

of energy micro-grids. Apart from considering 

renewable energy sources due to environmental 
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friendliness, It also runs easily without noise 

obviously because there is no moving part [80].  

c. Integration with other renewable energy 

sources 

The challenges in AI integration open avenues 

for exploring the seamless integration of PV 

systems with other renewable energy sources, 

such as wind. Coordinated grid management and 

the optimization of diverse renewable sources 

can be a focus for future research, aiming to 

create more comprehensive and sustainable 

energy solutions. The integration of AI allows 

for better coordination between different 

renewable energy sources, balancing energy 

generation and demand. This holistic approach 

contributes to more reliable and resilient energy 

infrastructures, maximizing the utilization of 

renewable resources. Collaborative research 

initiatives involving experts in AI, PV systems, 

and other renewable energy technologies can 

explore ways to create intelligent systems that 

optimize the integration of diverse energy 

sources. Developing standardized 

communication protocols and control strategies 

will be crucial for successful integration. 

The challenges and opportunities in the 

integration of AI in PV systems are intrinsically 

linked. While challenges such as data availability, 

computational cost, and interpretability pose 

hurdles, they also pave the way for innovative 

solutions. Opportunities, in turn, arisen from 

addressing these challenges, leading to 

development of personalized solutions, 

exploration of edge computing, and the seamless 

integration of PV with other renewable sources. 

The journey towards widespread adoption of AI 

in PV systems requires a collaborative effort 

from researchers, industry stakeholders, and 

policymakers. As challenges are met with 

innovative solutions, and opportunities are 

explored, the potential for AI to transform the 

landscape of solar energy becomes increasingly 

tangible. The boundless opportunities presented 

by AI in PV systems hold the promise of 

creating more resilient, efficient, and sustainable 

energy solutions for the future. 

II. Conclusion 

The integration of AI and PV technology has 

revolutionized the solar energy industry, 

enabling the optimization of efficiency, 

reliability, and cost-effectiveness. AI's 

transformative role in PV technology includes 

accurate forecasting, efficient anomaly detection, 

intelligent optimization, and proactive 

maintenance. These advancements have not only 

mitigated power fluctuations but also 

empowered utilities and grid operators to make 

informed decisions, optimizing energy 

scheduling, enhancing grid stability, and 

participating efficiently in energy markets. AI's 

role in efficient anomaly detection has 

revolutionized maintenance and performance 

monitoring of PV systems by continuously 

analyzing sensor data, identifying deviations 

indicative of potential malfunctions, allowing for 

prompt diagnostics and maintenance. This 

proactive approach not only prevents power 

losses but also contributes to the overall 

reliability and longevity of PV systems, marking 

a significant departure from traditional reactive 

maintenance strategies. 

In the realm of optimal management, AI 

algorithms, particularly those focusing on MPPT 

and battery storage optimization, dynamically 

adjust operational parameters, ensuring that PV 

systems operate at peak efficiency under varying 

environmental conditions, maximizing energy 

generation. The intelligence infused by AI into 

these optimization processes contributes to the 

overall performance and economic viability of 
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PV installations. Predictive maintenance, 

facilitated by AI, represents a paradigm shift 

from reactive to proactive strategies, anticipating 

component failures and optimizing maintenance 

schedules based on actual system health. This 

not only minimizes downtime and disruptions in 

energy production but also significantly extends 

the operational lifespan of PV components, 

translating into substantial cost savings. 

The future of AI in PV technology holds even 

greater promise as research and development 

efforts persist. The continuous refinement of AI 

models, exploration of advanced techniques, and 

pursuit of innovative solutions to existing 

challenges will likely elevate the role of AI to 

new heights within the solar energy domain. 

Advancements in AI techniques, such as deep 

learning, reinforcement learning, and ensemble 

methods, present exciting opportunities for 

further optimizing PV systems. Tailoring AI 

solutions tailored to specific PV systems and 

configurations stands as a future opportunity, as 

fine-tuning AI models to account for the unique 

characteristics of different installations can lead 

to enhanced accuracy and effectiveness. The 

integration of AI with edge computing and 

decentralization presents a promising avenue for 

addressing challenges related to computational 

cost and latency. 

The seamless integration of PV systems with 

other renewable energy sources, facilitated by 

AI, represents a frontier for future research and 

development. Coordinated grid management, 

where AI optimally balances the contributions of 

diverse renewables such as wind and solar, 

promises to maximize energy utilization and 

enhance overall grid stability. In conclusion, the 

integration of AI in PV technology has not only 

addressed existing challenges but also propelled 

it into a new era of efficiency, reliability, and 

sustainability. As AI continues to evolve, the 

promise of a cleaner, more sustainable energy 

landscape remains within our grasp. 

 

 References 

[1] C. Kuzemko et al., "Covid-19 and the 

politics of sustainable energy 

transitions," Energy research & social science, 

vol. 68, p. 101685, 2020. 

[2] J. Tian, L. Yu, R. Xue, S. Zhuang, and Y. 

Shan, "Global low-carbon energy 

transition in the post-COVID-19 era," 

Applied energy, vol. 307, p. 118205, 2022. 

[3] A.-A. B. Bugaje, M. O. Dioha, M. C. 

Abraham-Dukuma, and M. Wakil, 

"Rethinking the position of natural gas in 

a low-carbon energy transition," Energy 

Research & Social Science, vol. 90, p. 

102604, 2022. 

[4] R. K. R. Karduri, "Cobalt in Battery 

Production: Implications for the Mining 

Community," This paper has been published 

in International Journal of Advanced Research 

in Basic Engineering Sciences and Technology 

(IJARBEST), vol. 10, no. 11, 2023. 

[5] A. Androniceanu and O. M. Sabie, 

"Overview of green energy as a real 

strategic option for sustainable 

development," Energies, vol. 15, no. 22, p. 

8573, 2022. 

[6] A. Muranda, "Investigating the global 

renewable energy revolution: a 

transitions perspective," Stellenbosch: 

Stellenbosch University, 2020. 

[7] A. Androniceanu, O. M. Sabie, and A. 

Pegulescu, "An integrated approach of 

the human resources motivation and the 

quality of health services," Theoretical and 



232 

 

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES) 

 
 

Empirical Researches in Urban Management, 

vol. 15, no. 1, pp. 42-53, 2020. 

[8] A. H. SAYER, H. B. MAHOOD, and A. 

N. CAMPBELL, "Experimental study 

on a novel waterless solar collector," 

Journal of Thermal Engineering, vol. 9, no. 6, 

pp. 1490-1501, 2021. 

[9] V. K. Sharma et al., "Imperative role of 

photovoltaic and concentrating solar 

power technologies towards renewable 

energy generation," International Journal of 

Photoenergy, vol. 2022, 2022. 

[10] R. R. Hernandez et al., "Techno–

ecological synergies of solar energy for 

global sustainability," Nature Sustainability, 

vol. 2, no. 7, pp. 560-568, 2019. 

[11] P. Choudhary and R. K. Srivastava, 

"Sustainability perspectives-a review for 

solar photovoltaic trends and growth 

opportunities," Journal of Cleaner 

Production, vol. 227, pp. 589-612, 2019. 

[12] N. Raina, P. Sharma, P. S. Slathia, D. 

Bhagat, and A. K. Pathak, "Efficiency 

enhancement of renewable energy 

systems using nanotechnology," 

Nanomaterials and Environmental 

Biotechnology, pp. 271-297, 2020. 

[13] S. A. Qadir, H. Al-Motairi, F. Tahir, and 

L. Al-Fagih, "Incentives and strategies 

for financing the renewable energy 

transition: A review," Energy Reports, vol. 

7, pp. 3590-3606, 2021. 

[14] K. Erinosho et al., "EXPERIMENTAL 

DESIGN AND DEVELOPMENT OF 

LOCALLY MADE PARABOLIC 

TROUGH SOLAR THERMAL 

COLLECTOR UNIT," LAUTECH 

Journal of Engineering and Technology, vol. 

15, no. 1, pp. 45-52, 2021. 

[15] J. L. Sawin, "National Policy 

Instruments: Policy Lessons for the 

Advancement and Diffusion of 

Renewable EnergyTechnologies Around 

the World," in Renewable Energy: 

Routledge, 2012, pp. 71-114. 

[16] C. Diezmartínez, "Clean energy 

transition in Mexico: Policy 

recommendations for the deployment of 

energy storage technologies," Renewable 

and Sustainable Energy Reviews, vol. 135, p. 

110407, 2021. 

[17] M. Victoria et al., "Solar photovoltaics is 

ready to power a sustainable future," 

Joule, vol. 5, no. 5, pp. 1041-1056, 2021. 

[18] R. Ahmed, V. Sreeram, Y. Mishra, and 

M. Arif, "A review and evaluation of the 

state-of-the-art in PV solar power 

forecasting: Techniques and 

optimization," Renewable and Sustainable 

Energy Reviews, vol. 124, 03/02 2020. 

[19] C. Ma and Z. Liu, "Water-surface 

photovoltaics: Performance, utilization, 

and interactions with water eco-

environment," Renewable and Sustainable 

Energy Reviews, vol. 167, p. 112823, 2022. 

[20] D. Kolokotsa, D. Rovas, E. a. 

Kosmatopoulos, and K. Kalaitzakis, "A 

roadmap towards intelligent net zero-and 

positive-energy buildings," Solar energy, 

vol. 85, no. 12, pp. 3067-3084, 2011. 

[21] A. Khan, S. Aslam, K. Aurangzeb, M. 

Alhussein, and N. Javaid, "Multiscale 

modeling in smart cities: A survey on 

applications, current trends, and 



233 

 

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES) 

 
 

challenges," Sustainable cities and society, 

vol. 78, p. 103517, 2022. 

[22] R. KAYABAŞI and K. Metin, "Effect of 

module operating temperature on 

module efficiency in photovoltaic 

modules and recovery of photovoltaic 

module heat by thermoelectric effect," 

Journal of Thermal Engineering, vol. 9, no. 1, 

pp. 191-204, 2021. 

[23] M. Gao, B. Gregory, M. He, and Z. Xu, 

"Essential Reliability Service 

Requirements from Utility-scale Solar 

and Wind in Bulk Power Markets," 2019. 

[24] T. Ahmad et al., "Artificial intelligence in 

sustainable energy industry: Status Quo, 

challenges and opportunities," Journal of 

Cleaner Production, vol. 289, p. 125834, 

2021/03/20/ 2021. 

[25] O. Trofymenko, O. Shevchuk, N. Koba, 

Y. Tashcheiev, and T. Pavlenco, 

"Knowledge and innovation 

management for transforming the field 

of renewable energy," in International 

Conference on Artificial Intelligence and 

Sustainable Computing, 2021, pp. 73-87: 

Springer. 

[26] Q. He, H. Zheng, X. Ma, L. Wang, H. 

Kong, and Z. Zhu, "Artificial intelligence 

application in a renewable energy-driven 

desalination system: A critical review," 

Energy and AI, vol. 7, p. 100123, 2022. 

[27] S. U. Khan, N. Khan, F. U. M. Ullah, M. 

J. Kim, M. Y. Lee, and S. W. Baik, 

"Towards intelligent building energy 

management: AI-based framework for 

power consumption and generation 

forecasting," Energy and Buildings, vol. 

279, p. 112705, 2023. 

[28] K. DeMedeiros, A. Hendawi, and M. 

Alvarez, "A survey of AI-based anomaly 

detection in IoT and sensor networks," 

Sensors, vol. 23, no. 3, p. 1352, 2023. 

[29] D. Ji, C. Zhang, M. Lv, Y. Ma, and N. 

Guan, "Photovoltaic array fault detection 

by automatic reconfiguration," Energies, 

vol. 10, no. 5, p. 699, 2017. 

[30] V. Kurukuru, A. Haque, M. Khan, S. 

Sahoo, A. Malik, and F. Blaabjerg, "A 

Review on Artificial Intelligence 

Applications for Grid-Connected Solar 

Photovoltaic Systems. Energies 2021, 14, 

4690," ed: s Note: MDPI stays neutral 

with regard to jurisdictional claims in 

published …, 2021. 

[31] T. M. Alabi et al., "A review on the 

integrated optimization techniques and 

machine learning approaches for 

modeling, prediction, and decision 

making on integrated energy systems," 

Renewable Energy, 2022. 

[32] P. Kumari and D. Toshniwal, "Deep 

learning models for solar irradiance 

forecasting: A comprehensive review," 

Journal of Cleaner Production, vol. 318, p. 

128566, 2021. 

[33] B. PATIL, H. Jitendra, and S. 

WANKHEDE, "Performance 

enhancement of stepped solar still 

coupled with evacuated tube collector," 

Journal of Thermal Engineering, vol. 9, no. 5, 

pp. 1177-1188, 2023. 

[34] M. K. Boutahir, Y. Farhaoui, and M. 

Azrour, "Machine learning and deep 

learning applications for solar radiation 

predictions review: morocco as a case of 

study," in Digital economy, business analytics, 



234 

 

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES) 

 
 

and big data analytics applications: Springer, 

2022, pp. 55-67. 

[35] Z. Qadir et al., "Predicting the energy 

output of hybrid PV–wind renewable 

energy system using feature selection 

technique for smart grids," Energy Reports, 

vol. 7, pp. 8465-8475, 2021. 

[36] Y. Ma, Q. Lv, R. Zhang, Y. Zhang, H. 

Zhu, and W. Yin, "Short-term 

photovoltaic power forecasting method 

based on irradiance correction and error 

forecasting," Energy Reports, vol. 7, pp. 

5495-5509, 2021. 

[37] G. Moreno, P. Martin, C. Santos, F. J. 

Rodríguez, and E. Santiso, "A day-ahead 

irradiance forecasting strategy for the 

integration of photovoltaic systems in 

virtual power plants," IEEE Access, vol. 

8, pp. 204226-204240, 2020. 

[38] C. Sweeney, R. J. Bessa, J. Browell, and 

P. Pinson, "The future of forecasting for 

renewable energy," Wiley Interdisciplinary 

Reviews: Energy and Environment, vol. 9, no. 

2, p. e365, 2020. 

[39] A. L. Konde, M. Kusaf, and M. Dagbasi, 

"An effective design method for grid-

connected solar PV power plants for 

power supply reliability," Energy for 

Sustainable Development, vol. 70, pp. 301-

313, 2022. 

[40] M. S. Ibrahim, W. Dong, and Q. Yang, 

"Machine learning driven smart electric 

power systems: Current trends and new 

perspectives," Applied Energy, vol. 272, p. 

115237, 2020. 

[41] B. Kosovic et al., "A comprehensive 

wind power forecasting system 

integrating artificial intelligence and 

numerical weather prediction," Energies, 

vol. 13, no. 6, p. 1372, 2020. 

[42] M. Q. Raza and A. Khosravi, "A review 

on artificial intelligence based load 

demand forecasting techniques for smart 

grid and buildings," Renewable and 

Sustainable Energy Reviews, vol. 50, pp. 

1352-1372, 2015. 

[43] M. S. Hossain and H. Mahmood, "Short-

term photovoltaic power forecasting 

using an LSTM neural network and 

synthetic weather forecast," Ieee Access, 

vol. 8, pp. 172524-172533, 2020. 

[44] E. Esenogho, K. Djouani, and A. M. 

Kurien, "Integrating artificial intelligence 

Internet of Things and 5G for next-

generation smartgrid: A survey of trends 

challenges and prospect," IEEE Access, 

vol. 10, pp. 4794-4831, 2022. 

[45] C. Feng, Y. Liu, and J. Zhang, "A 

taxonomical review on recent artificial 

intelligence applications to PV 

integration into power grids," International 

Journal of Electrical Power & Energy Systems, 

vol. 132, p. 107176, 2021. 

[46] S. A. Zaki, H. Zhu, M. A. Fakih, A. R. 

Sayed, and J. Yao, "Deep‐learning–based 

method for faults classification of PV 

system," IET Renewable Power Generation, 

vol. 15, no. 1, pp. 193-205, 2021. 

[47] A. Alkatheri, E. Al-Ammar, M. Alotaibi, 

W. ko, S. Park, and H.-J. Choi, 

"Application of Artificial Intelligence in 

PV Fault Detection," Sustainability, vol. 

14, 10/25 2022. 

[48] S. Samara and E. Natsheh, "Intelligent 

PV panels fault diagnosis method based 



235 

 

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES) 

 
 

on NARX network and linguistic fuzzy 

rule-based systems," Sustainability, vol. 

12, no. 5, p. 2011, 2020. 

[49] Y. Ran, X. Zhou, P. Lin, Y. Wen, and R. 

Deng, "A survey of predictive 

maintenance: Systems, purposes and 

approaches," arXiv preprint 

arXiv:1912.07383, 2019. 

[50] J. Dalzochio et al., "Machine learning and 

reasoning for predictive maintenance in 

Industry 4.0: Current status and 

challenges," Computers in Industry, vol. 

123, p. 103298, 2020. 

[51] K. Osmani, A. Haddad, T. Lemenand, B. 

Castanier, and M. Ramadan, "A review 

on maintenance strategies for PV 

systems," Science of the Total Environment, 

vol. 746, p. 141753, 2020. 

[52] M. De Benedetti, F. Leonardi, F. 

Messina, C. Santoro, and A. Vasilakos, 

"Anomaly detection and predictive 

maintenance for photovoltaic systems," 

Neurocomputing, vol. 310, pp. 59-68, 2018. 

[53] D. Lee et al., "Methanol tolerant Pt–C 

core–shell cathode catalyst for direct 

methanol fuel cells," ACS Applied 

Materials & Interfaces, vol. 12, no. 40, pp. 

44588-44596, 2020. 

[54] S. Obukhov, A. Ibrahim, A. A. Z. Diab, 

A. S. Al-Sumaiti, and R. Aboelsaud, 

"Optimal performance of dynamic 

particle swarm optimization based 

maximum power trackers for stand-

alone PV system under partial shading 

conditions," IEEE Access, vol. 8, pp. 

20770-20785, 2020. 

[55] B. Yang et al., "Comprehensive overview 

of maximum power point tracking 

algorithms of PV systems under partial 

shading condition," Journal of Cleaner 

Production, vol. 268, p. 121983, 2020. 

[56] S. Lyden and M. E. Haque, "Maximum 

Power Point Tracking techniques for 

photovoltaic systems: A comprehensive 

review and comparative analysis," 

Renewable and sustainable energy reviews, vol. 

52, pp. 1504-1518, 2015. 

[57] D. Diaz Martinez, R. Trujillo Codorniu, 

R. Giral, and L. Vazquez Seisdedos, 

"Evaluation of particle swarm 

optimization techniques applied to 

maximum power point tracking in 

photovoltaic systems," International 

Journal of Circuit Theory and Applications, 

vol. 49, no. 7, pp. 1849-1867, 2021. 

[58] A. Heidari, F. Maréchal, and D. 

Khovalyg, "Reinforcement Learning for 

proactive operation of residential energy 

systems by learning stochastic occupant 

behavior and fluctuating solar energy: 

Balancing comfort, hygiene and energy 

use," Applied Energy, vol. 318, p. 119206, 

2022. 

[59] R. Owais and S. J. Iqbal, "An intelligent 

two-level control of solar photovoltaic 

power plant for electromechanical 

oscillation damping in power systems," 

Arabian Journal for Science and Engineering, 

vol. 48, no. 5, pp. 6271-6292, 2023. 

[60] I. Antonopoulos et al., "Artificial 

intelligence and machine learning 

approaches to energy demand-side 

response: A systematic review," Renewable 

and Sustainable Energy Reviews, vol. 130, p. 

109899, 2020. 



236 

 

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES) 

 
 

[61] F. A. Banakhr and M. I. Mosaad, "High 

performance adaptive maximum power 

point tracking technique for off-grid 

photovoltaic systems," Scientific Reports, 

vol. 11, no. 1, p. 20400, 2021. 

[62] Z. M. Çınar, A. Abdussalam Nuhu, Q. 

Zeeshan, O. Korhan, M. Asmael, and B. 

Safaei, "Machine learning in predictive 

maintenance towards sustainable smart 

manufacturing in industry 4.0," 

Sustainability, vol. 12, no. 19, p. 8211, 

2020. 

[63] P. Boza and T. Evgeniou, "Artificial 

intelligence to support the integration of 

variable renewable energy sources to the 

power system," Applied Energy, vol. 290, 

p. 116754, 2021. 

[64] M. Soori, B. Arezoo, and R. Dastres, 

"Internet of things for smart factories in 

industry 4.0, a review," Internet of Things 

and Cyber-Physical Systems, 2023. 

[65] A. Mellit and S. Kalogirou, "Artificial 

intelligence and internet of things to 

improve efficacy of diagnosis and remote 

sensing of solar photovoltaic systems: 

Challenges, recommendations and future 

directions," Renewable and Sustainable 

Energy Reviews, vol. 143, p. 110889, 2021. 

[66] N. Sambasivan, S. Kapania, H. Highfill, 

D. Akrong, P. Paritosh, and L. M. 

Aroyo, "“Everyone wants to do the 

model work, not the data work”: Data 

Cascades in High-Stakes AI," in 

proceedings of the 2021 CHI Conference on 

Human Factors in Computing Systems, 2021, 

pp. 1-15. 

[67] R. E. Baker et al., "Infectious disease in 

an era of global change," Nature Reviews 

Microbiology, vol. 20, no. 4, pp. 193-205, 

2022. 

[68] E. H. Sepúlveda-Oviedo, L. Travé-

Massuyès, A. Subias, M. Pavlov, and C. 

Alonso, "Fault diagnosis of photovoltaic 

systems using artificial intelligence: A 

bibliometric approach," Heliyon, 2023. 

[69] Z. Li, M. Shahidehpour, and X. Liu, 

"Cyber-secure decentralized energy 

management for IoT-enabled active 

distribution networks," Journal of Modern 

Power Systems and Clean Energy, vol. 6, no. 

5, pp. 900-917, 2018. 

[70] L. Shen, X. Dou, H. Long, C. Li, J. 

Zhou, and K. Chen, "A cloud-edge 

cooperative dispatching method for 

distribution networks considering 

photovoltaic generation uncertainty," 

Journal of Modern Power Systems and Clean 

Energy, vol. 9, no. 5, pp. 1111-1120, 

2020. 

[71] A. Zakharchenko and O. Stepanets, 

"Edge computing in building automation 

system-pros and cons," in Modeling, control 

and information technologies: proceedings of 

international scientific and practical conference, 

2019, pp. 130-132. 

[72] H. ur Rehman, J. Hirvonen, R. Kosonen, 

and K. Sirén, "Computational 

comparison of a novel decentralized 

photovoltaic district heating system 

against three optimized solar district 

systems," Energy Conversion and 

Management, vol. 191, pp. 39-54, 2019. 

[73] U. Langenmayr, W. Wang, and P. 

Jochem, "Unit commitment of 

photovoltaic-battery systems: An 

advanced approach considering 



237 

 

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES) 

 
 

uncertainties from load, electric vehicles, 

and photovoltaic," Applied Energy, vol. 

280, p. 115972, 2020. 

[74] C. Samende, S. M. Bhagavathy, and M. 

McCulloch, "State of charge based droop 

control for coordinated power exchange 

in low voltage DC nanogrids," in 2019 

IEEE 13th International Conference on Power 

Electronics and Drive Systems (PEDS), 2019, 

pp. 1-6: IEEE. 

[75] A. Krama, L. Zellouma, B. Rabhi, S. S. 

Refaat, and M. Bouzidi, "Real-time 

implementation of high performance 

control scheme for grid-tied PV system 

for power quality enhancement based on 

MPPC-SVM optimized by PSO 

algorithm," Energies, vol. 11, no. 12, p. 

3516, 2018. 

[76] S. G. Sigarchian, R. Paleta, A. Malmquist, 

and A. Pina, "Feasibility study of using a 

biogas engine as backup in a 

decentralized hybrid (PV/wind/battery) 

power generation system–Case study 

Kenya," Energy, vol. 90, pp. 1830-1841, 

2015. 

[77] C.-T. Phan-Tan and M. Hill, 

"Decentralized optimal control for 

photovoltaic systems using prediction in 

the distribution systems," Energies, vol. 

14, no. 13, p. 3973, 2021. 

[78] Z. Zhang et al., "A Lightweight System 

for High-efficiency Edge-Cloud 

Collaborative Applications," 2022. 

[79] M. Dong, J. Zhao, D.-a. Li, B. Zhu, S. 

An, and Z. Liu, "ISEE: Industrial 

Internet of Things perception in solar 

cell detection based on edge computing," 

International Journal of Distributed Sensor 

Networks, vol. 17, no. 11, p. 

15501477211050552, 2021. 

[80]    O. A. Adeaga, A. A. Ademola Adyo 

 Ohunakin (2015) Modeling of Solar 

Drying Economics Using  Life Cycle 

Savings (L.C.S)  Method. Journal of Power 

and Energy Engineering, 03,55-70. 

 doi: 10.4236/jpee.2015.38006 

  

 

http://dx.doi.org/10.4236/jpee.2015.38006

