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Mathematical Modeling and Analysis of Cholera Control Strategies in 

Resource-Limited Regions 

 

 Adebayo, S. R., Kolawole, M. K. and Odeyemi, K. A. 

Abstract Cholera, a major public health concern caused by the Vibrio cholerae bacterium, remains 

a pressing issue in remote regions of Nigeria, particularly during the dry season when access to 

clean and treated water is scarce. We seeks to develop a robust model to better understand the 

rapid transmission of cholera in these areas and assess the effectiveness of various intervention 

strategies, including public health education, antibiotic treatments, improved water treatment 

practices, and enhanced environmental sanitation. This addresses the existence and uniqueness of 

the model, its positivity and boundedness properties, and calculates the basic reproduction number,

)( 0R , which serves as a critical threshold for disease dynamics. Specifically, when )1( 0 R , the 

disease spread will diminish over time, while )1( 0 R  indicates sustained transmission. Both local 

and global stability analyses of the model were conducted, alongside a sensitivity analysis to identify 

key parameters influencing disease control. Furthermore, numerical simulations utilizing the 

homotopy perturbation method were employed to evaluate the specific contributions of control 

measures in reducing cholera transmission. The findings offer critical insights into designing 

effective interventions, particularly by enhancing access to safe water and implementing targeted 

public health strategies, to curb cholera outbreaks in resource-limited settings. 

Keywords: Mathematical Modeling, Cholera Control, Epidemiology, Resource-Limited Regions,  
  Disease Dynamics 

I. Introduction

Cholera is a life-threatening disease primarily 

spread through the fecal-oral route, often 

resulting from contaminated water and poor 

sanitation practices [1]. The disease is caused by 

the bacterium vibrio cholerae, which thrives in 

environments with inadequate hygiene, leading 

to acute diarrhea and severe dehydration that 

can be fatal without timely treatment. Cholera 

outbreaks impose significant burdens on 

healthcare systems, increase mortality rates, and 

deplete medical resources, particularly affecting 

vulnerable groups such as children and the 

 

 

elderly [2, 3]. In Northern Nigeria, cholera 

remains a recurring public health issue, 

exacerbated by an arid climate, limited access to 

safe drinking water, and insufficient sanitation 

infrastructure in [4]. The interplay of geographic 

and socio-economic factors, combined with 

environmental conditions during the dry season, 

creates an ideal environment for the 

proliferation of vibrio cholerae, making disease 

control efforts particularly complex [5, 6]. To 

better understand and mitigate cholera outbreaks 

in such high-risk settings, it is essential to 

develop models that capture the dynamics of 

cholera transmission. The Susceptib
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le (S), Vaccinated (S), Exposed (E), Infected (I), 

Recovered (R) and Bacteria (B) as (SEIRB) 

model provides a comprehensive mathematical 

framework for analyzing cholera spread in 

regions like Northern Nigeria [7-9]. This model 

integrates critical epidemiological factors, 

including bacterial transmission, population 

immunity, and environmental influences on 

bacterial survival, such as the environmental 

bacterial persistence coefficient (c) [10]. Cholera 

spreads through human-environment 

interactions, especially via contaminated water in 

areas with poor sanitation [11]. In Northern 

Nigeria, dry-season water scarcity intensifies 

human-to-human and environmental 

transmission by [12, 13]. The environmental 

bacteria coefficient, influenced by factors like 

water quality and temperature, drives bacterial 

growth. Population immunity, shaped by prior 

exposure, vaccination, and health status, affects 

vulnerability. The (SEIRB) model captures these 

dynamics for targeted intervention in [14]. This 

compartment represents individuals with no 

prior exposure to cholera and no immunity, 

making them highly susceptible to infection 

during outbreaks. Vaccinated individuals, having 

received the cholera vaccine, possess some 

degree of protection, underscoring the 

importance of vaccination in controlling cholera, 

especially in outbreak-prone areas by [15-19]. 

Exposed individuals have encountered vibrio 

cholerae but remain asymptomatic. They may 

either develop symptoms after the incubation 

period or recover silently, depending on their 

immune system [20, 21]. Actively infected 

individuals can transmit cholera to others, either 

directly or by contaminating water sources. 

Recovered individuals, having survived the 

disease, gain temporary or permanent immunity, 

influenced by the cholera strain and their health 

condition [22]. The bacteria compartment 

includes environmental reservoirs, such as 

contaminated water, where the bacterium 

persists and facilitates transmission [23]. The 

(SEIRB) model effectively captures these 

dynamics, offering insights into cholera's spread 

and persistence in Northern Nigeria. Varied 

immunity levels, shaped by factors like age, 

nutrition, and healthcare access, impact 

vulnerability, with children, the elderly, and the 

immune compromised being at greater risk [24, 

25]. A key factor, the environmental bacteria 

coefficient (c), determines how vibrio cholerae 

multiplies in water. This parameter, influenced 

by temperature, nutrient levels, and 

contaminants, escalates during the dry season in 

Northern Nigeria [26]. Water scarcity drives 

reliance on contaminated sources, worsening 

bacterial growth and cholera risk [27]. The 

model uses differential equations to describe 

transitions among compartments (S, V, E, I, R, 

B), incorporating transmission, recovery, and 

environmental impacts. Accurate parameter 

estimation, including that of (c), is challenging 

due to variations in climate, sanitation, and 

population density in Northern Nigeria, where 

these factors significantly affect cholera 

transmission [28, 29]. A multifaceted approach is 

necessary, incorporating improved sanitation, 

better water access, robust healthcare systems, 

public awareness campaigns and international 

collaboration [30]. Leveraging numerical 

simulations to fine-tune control strategies can 

help develop solutions tailored to Northern 

Nigeria’s unique challenges [31]. By addressing 

immediate and long-term needs, these measures 

aim to reduce cholera incidence, improve health 

outcomes, and build resilient communities in 

affected regions. 

II. Materials and Methods 

A. Model formulation  
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A total population N(t) is considered which is 

divided into sub-populations of S(t) susceptible, 

E(t) exposed, I(t) infected, R(t) recovered and 

B(t) bacteria causing population. The level of 

individuals migrating into the population at , 

effective contact rate of an individual   and the 

level of the spread induced rate at  . 

Transmission rate in cholera disease between the 

two or more population of individuals being 

exposed at   . The modification of the disease 

capacity multiplicative effect is at a rate c and 

enlightenment through educational program 

initiatives on the rapid spread on how deadly 

cholera is at a rate of . Prevention on the 

spread with a waning rate   and regular 

treatment of cholera disease with antibiotics is at 

rate of . An infected individual are subjected to 

recover at a rate of r  and individuals that are 

hospitalized having been infected is )1(    

while that of infected are said to recover at a rate 

of )( r . More so, set of bacteria individual 

form back into the susceptible population 

through water treatment occurs at rate of T  

when immunity level is high. Respective 

individuals across the sub-population are 

subjected to death naturally by  . Pictorial 

illustration of this can be displayed from the fig. 

1 and model equation is given by equation 1 

below.   

)()()()()()( tStTBtStItS
dt

dS
 

 

)()()()( tEctItS
dt

dE
   

)()()()()( tIrtEctS
dt

dI
   

         (1) 

)()()()( tRtIrtS
dt

dR
   

BT
dt

dB
)(   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By initial condition that 10  T . When 0T , 

vulnerable individuals are not immunized or 

immunization does not affect the vulnerable 

compartment. The description of the model 

parameters can be illustrated in Table1 as shown 

below. 

B. Existence and uniqueness of model 

solution 

The model in equation (1), which represents the 

spread of an epidemic disease within a human 

population, requires that its parameters be 

nonnegative for its existence and uniqueness of 

the model solution. To ensure that the system of 

differential equations in equation (1) is both 

mathematically valid and epidemiologically 

sound, it is important to establish that the 

model’s state variables remain nonnegative. 

Equation (1) is considered well-defined at the 

initial point if the initial conditions are 

nonnegative.

          00000 0,0,0,0,,0 bBrRiIeEsS 

; In that case, the solutions of system (1) will 

persist in being nonnegative throughout their. 

 

Fig. 1: Schematic Diagram of the Model. 
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evolution, 0t and that these positive solutions 

are bounded. We thus apply the following 

theorems 

 

i. Theorem 1  

Let ),( yx be distinct points of normed linear 

space  ,X over . Then the map of 

  ,]1,0[: Xp  such that 

yxp )1()(   is continuous on [0, 1]. 

Proof: 

Let ]1,0[0  then yxp )1()( 000   for 

any ]1,0[0  , 

 yx

yxpp





0

000 )()()()(




 (2) 

If 0 is given, let 
yx 




 .If   0

, then the   )()( 0pp . Therefore, p is 

continuous at 0 . Sınce 0  is an arbitrary point 

in [0, 1]. Then p is continuous on [0, 1]. Let X be 

a linear space over . If (x, y) are distinct points 

of X, the set yx )1(   lies in 10    

Hence, the solutions of system (1) are bounded 

if we consider the total population. The variation 

in the total population concerning time is given 

by: 

B(t)R(t) + I(t) + E(t) + S(t))( tN             (3) 

The variation in the total population concerning 

time is given by: 

 B(t)R(t) + I(t) + E(t) + S(t)
)(


dt

d

dt

tdN

 
(4) 

Such that  

  N
dt

tdN
BRIES

dt

tdN
 

)()(

            (5) 

Hence, it is obtained that 

Table 1.Description of model parameters and 

values 

 

Variable  Description 

 Susceptible  population 

E(t) Exposed population 

I(t) Infected population 

R(t) 

B(t) 

Recovered population 

Bacteria population 

Parameter Description Values 

 Total population 0.1625 

 Recruitment rate into the susceptible 

population 
 

 Transmission Coefficient  

 Vibro cholera multiplicative effect  

 Water treatment rate on rapid cholera 

growth 
 

 Natural death  

 Rate of educational program  

 Immunity waning rate  

 Environmental bacteria capacity  1.0126 

 Treatment rate with antibiotics 1.1927 

 Induced death 1.0126 

 Recovery rate 1.8273 
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 N
dt

tdN


)(
, using the integrating factor 

concept on the total population N(t) and this 

leads to ceetN tt 


 


)(   (6) 

Firstly,  

)0()0( 






 ceN , resulting to 




 )0(Nc     (7) 

Thus, substituting (6) into (5) as time 

progressively increases yields: 

 

        

(8) 

Then 



)0(N , then




)(tN .    

This is a positive invariant set under the flow 

described by (8) so that no solution path leaves 

through any boundary 5

 . Hence, it is sufficient 

to consider the dynamics of the model in the 

domain 5

 . In this region, the model can be 

considered has be mathematically and 

epidemiologically well-posed. This shows that 

the total population and the subpopulation 

)(),(),(),(),( tBtRtItEtS of the model are 

bounded and is a unique solution. Hence, its 

applicability to studying physical systems is 

feasible. 

C. Positivity and Boundedness of Model 

 

This shows that the total population )(tN , and 

the subpopulation )(),(),(),(),( tRtTtItEtS of 

the model are bounded and is a unique solution. 

Hence, its applicability to study physical systems 

is feasible. 

ii. Theorem 2 

Suppose 0xX  is a space of consecutive real 

number and which are defined as  

















 

1

1

),(
n

i

ixyxL   1  (9) 

X with the metric is called 

n
 space. If 




x or 

absolutely convergent and  

















 

1

1

),(
i

ii yxyxL , then X with this 

metric is called an 
 space. 

 

Proof: 

It can be checked that for each n: 

 2
321

22

3

2

2

2

1
......0 nn

xxxxxxxx    (10) 

This will result to; 

 2

21

2

2

2

1
xxxx          (11) 

Therefore, 

 
nxxxx xxxxn  ...321...0 2

1
22

3
2
2

2
1 ,  

If 


1n

nx  converges , that is 


1n

nx is absolutely 

convergent, then  

   






1

321...0 ...2

1
22

3
2
2

2
1

n

nnxxxx xxxxxn

              (12) 

Therefore, 

 










1

22

3

2

2

2

10 ...
n

nn
xnx xxxx     (13) 
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The sequence 
n

x is monotone increasing and 

bounded above, it therefore converges. Thus 




1n

nx converges absolutely, i. E if 1nx , then 

2nx where 21   . In case of 1  denote 

the set of all sequences of nx of real numbers 

such that 


1n

nx is convergent absolutely. i.e 




1n

nx whereas 2 denote the set of all 

sequence nx of real numbers such that 




1

2

n

nx converges. From the proceeding 

21   nn xx i.e 21   . Further, if 

4

3

1

n

xn  , then 


1n

nx diverges and thus 

1nx . But  









1 1 4

3

2 1

n n

n

n

x converges, 

implying that 2nx . We conclude that 

21   and thus 21   . If ),( nn yx are 

sequences of real numbers, then; 

 

 

 

 

 

Therefore if 


1

2

n

ix and 


1

2

n

iy then 




1

2)(
n

ii yx for all n. The monotone 

increasing sequence 











1

2)(
n

ii yx is then 

bounded above and hence converges i.e. 




1

2)(
n

ii yx . Thus 22)(  ii yx if 

2),( nn yx . 

Given that the 

            00,00,00,00,00,00 000000  rRtTiIeEvVsS

, and 0t , then the solutions S of the system (1) 

will always be nonnegative. Let: 

 

 

 

If 5....2,1, if i where f is a constant. 

Then, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation (16) confirms that system (1) is 

bounded, invariantly and attractively influence 

the bounded region of 5

   

D. Cholera-Non-Infected Equilibrium State  

 

 

      (14) 

  (15)

 

 

 

        

 

       (16)
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The equilibrium state of non-infected individuals 

with cholera signifies a system devoid of vibro-

cholerae, encompassing individuals categorized 

as infected (I), exposed (E), and recovered (R)

0 REI . 

)()()()()()(0 tStTBtStItS    

)()()()(0 tEctItS    

)()()()()(0 tIrtEctS    

     (17) 

)()()()(0 tRtIrtS    

BT )(0   

At no outbreak of tuberculosis, the class of the 

disease is subjected as 0t , from (21),  

)()()()()()(0 tStTBtStItS  

, 0R .where, 



S   

Thus, the disease-free equilibrium yields:












 0,0,0,),,,( 0000 RIESRIES


     (18) 

E. Steady-State Prevalence 

It is crucial to highlight the dynamic nature of 

cholera prevalence, especially its central role in 

sustaining outbreaks within a population. To 

analyse the system at equilibrium, consider the 

set of equations in (1), where the equilibrium 

points represent the endemic states of cholera 

prevalence. ),,,,(  BRIES and 0t   

 

 

 

   
   TT

TREc
I












 

     (19) 

    
   TrT

TRE
R













 

   
   TrrcT

TREr
B












    

F. The Disease Threshold *R  

The basic reproduction number, denoted as *R . 

To quantify the likelihood of new cholera 

infections arising from a single infectious 

individual in a previously unexposed population, 

we apply the next-generation matrix approach to 

construct the system outlined in (1), with a focus 

on infectious compartments. In this method, the

F and V  matrices are computed, representing 

the rate of new infections and the rate of 

transitions into and out of the infected 

compartment, respectively. This approach 

captures the dynamics of cholera transmission 

and reinfection, emphasizing the importance of 

treatment as a critical control measure. These 

matrices are obtained using a complex derivation 

from the equations in System (1),

)(* IGR    taking 1 VFG and  is 

the spectral radius of the matrix IG  .From 

the system of equation (1) it is obtained for 

matrix  

F andV : 


















j

ii

i
x

xf
F

)(




















j

ii

i
x

x
V

)(
         

     (20) 

And such that  











0

0S
f


 and















)()()()()(

)()(

tIrtEctS

tEc
v




            

            (21) 

Then, 
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













 



0





F 













)()(

0)(





rc

c
V  

   

 

 

   crTr
R









 

              (22) 

It results that the basic reproductive ratio 

determines the number of infected individual 

migrating to the subpopulation of exposed and 

infected, as this affect the level of recovery form 

the spread of tuberculosis. The leading 

eigenvalue of the non-invariant is the basic 

reproduction number of the disease model 

 

G. Local stability of the disease-free state  

We examined the local stability of the disease-

free state for cholera by analysing the minimal 

recurrence rate impact. When the recurrence rate

1* R , the disease declines, to determine 

stability using a Jacobian matrix and a 

characteristic equation. 

Lemma 1 

The disease-free state of the model is locally  

 

 

 

 

The negativity of the invariants region with 

respective eigen values obtained for the model 

equation is asymptotically stable 

H. Local Stability of Endemic Equilibrium 

Point 

Theorem: The regional resilience of the persistent 

equilibrium of the proposed model is locally 

 

asymptotically stable 1* R , otherwise 1* R if 

and only if the disease state prevails 

 

Proof:  

The disease-free equilibrium obtained as the 

Jacobian matrix of the system of (1) is evaluated 

at the disease free State using the linearization 

thus; 

 

 

 

 

 

 

 

 

 

 

 

 

Computing for the eigenvalues, 0
1

 IJ iE  , 

from the Jacobian matrix the respective eigen 

values of the matrix can be obtained as; 

 

 
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
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T

T
 (24) 

 

 

 

 

 

asymptotically Stable if and unstable otherwise if 

1R  

Proof: 

Suppose,

  BbBRaRIzIEyESxS ,,,,

                     (25) 

Linearizing equation (1), is then obtained as  
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     (26) 

Jacobian matrix of the system of, 

 

 

 
      

 
(27) 

The resulting eigenvalue of the above matrix is 

obtained as;
 

 

      

If 

 

 

             (28) 

It is therefore obtained that 

))()()()((   edcba     

 

 

            (29)
  

 

Therefore, the persistent resilience of the 

respective Eigen values in the model invariance 

region of 5
 is asymptotically stable. 

 

I. Numerical simulation 

We conducted numerical simulation on the 

mathematical model, we create the following 

iterative scheme of Laplace adomian 

decomposition method for the model equation. 

The Laplace adomian decomposition method 

was employed to computationally analyse the 

epidemic model. MAPLE 18 software facilitated 

the generation of iteration formulas for each 

compartment. These formulas were then 

iteratively solved, enabling the numerical 

evaluation of the model's dynamics and 

providing insights into the epidemic's behaviour 

and progression. Taking the Laplace transform 

of both sides of the above equation. 

 

   )()()()()()( tStTBtStItSLL
dt
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





 

   )()()()( tEcLtItSL
dt
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






 

   )()()()()( tIrLtEctSL
dt

dI
L  









                 (30) 

   )()()()( tRLtIrtSL
dt

dR
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
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
 

 BTL
dt

dB
L )( 








 

Substituting into (30) to yield 

   )()()()()()()0()( tStTBtStItSLStSmL  

 

     )()()()()0()( tEcLtItSLEtEmL  
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   BTLBtBmL )()0()(               (31) 

Subsequently, iteration result obtained form the 

above equation is deduced as; 
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The initial approximations of each class are 

given by;  

 

 

Now, comparing the coefficients 1n . Using 

the recurrence relations obtained from the 

iterations. Compartmentally it is obtained that 
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Further iterations are done to obtain successive 
iterative terms at n=2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
and so on. This can be further till desired 

number of iterations are obtained. Thus, the 

obtained raw solution to each model 

compartment is obtained as: 

 

 

 

 

Evaluating these series results using the 

corresponding variables and parameter values,  

 

 

 

 

 

 

 

Hence from the results of successive 

iterations, comparison of control intervention 

effects on sub-populations in its graphical 

illustration depicts as; 

 

III. Results and Discussion 

 

 

 

 

                                                                         (33) 

tirtB 







 0021 )(

2

1

3

1
)( 

 

 

 

      (34) 

 

      (35) 

 

 



258 

 

Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES) 

 
 

From the simulation of iterative values of the 

model formulation using Laplace adomian 

decomposition method these are computed 

graphically with the help Maple-18 software as 

for respective compartments. The results of Fig. 

2 to Fig.5 represents the effects of the target 

parameters on the compartments of the model 

solution, these are graphically illustrated as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Discussion 

It is obtained that Fig 2: The effect of antibiotics 

is a prominent tool in reducing the spread of 

cholera to the vulnerable population. Fig 3: 

Depicts the effect of antibiotics on the infected 

population as these bring about a decline in the 

outbreak of cholera. Fig 4: Shows that treatment 

of water in this region will bring about a drastic 

measure to the control of cholera as the level of 

the spread reduces in the population while fig 5: 

 

Fig 2. The Effect of Antibiotics (c) on the 

Exposed Population 

 

 

Fig 3. The Effect of Antibiotics (c) on the 

Infected Population 

 

Fig 4. Water Treatment on Recovered Population 

brings about a Decline in the Disease Population 

 

 

Fig 5. Reduction in Environmental Capacity Effect 

on the Susceptible Population. 
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The level of environmental capacity and 

sensitization on the set of vulnerable 

populations reduces as it brings about a rapid 

decline in the spread cholera. 

IV. Conclusion 

The integration of mathematical modeling with 

comprehensive control strategies has been 

instrumental in mitigating cholera spread in 

remote Nigerian areas during the dry season. 

Incorporating educational programs, antibiotics, 

water treatment, and environmental cleanliness 

into the model has led to significant progress. 

These initiatives have raised awareness, enabled 

prompt treatment, ensured access to clean water, 

and improved sanitation, collectively reducing 

the impact of cholera outbreaks. Continued 

collaboration and targeted interventions are 

crucial for sustaining these efforts and enhancing 

resilience against cholera in vulnerable 

populations. 

 

This research underscores the critical need for 

targeted interventions to address cholera 

outbreaks in remote areas of Nigeria during dry 

seasons. Based on the findings, it is 

recommended to implement enhanced water 

treatment infrastructure, promote sustainable 

farming practices and conduct community-

specific educational programs. Additionally, 

policymakers, health practitioners should 

collaborate with local communities to develop 

and implement contextually relevant preventive 

measures. This comprehensive approach will 

contribute significantly to mitigating cholera 

spread and building resilience in vulnerable 

regions. 
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