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Mathematical Modeling and Analysis of Cholera Control Strategies in
Resource-Limited Regions

Adebayo, S. R., Kolawole, M. K. and Odeyemi, K. A.

Abstract Cholera, a major public health concern caused by the Vibrio cholerae bacterium, remains
a pressing issue in remote regions of Nigeria, particularly during the dry season when access to
clean and treated water is scarce. We seeks to develop a robust model to better understand the
rapid transmission of cholera in these areas and assess the effectiveness of various intervention
strategies, including public health education, antibiotic treatments, improved water treatment
practices, and enhanced environmental sanitation. This addresses the existence and uniqueness of
the model, its positivity and boundedness properties, and calculates the basic reproduction number,

(R,), which serves as a critical threshold for disease dynamics. Specifically, when (R, <1), the
disease spread will diminish over time, while (R, >1) indicates sustained transmission. Both local

and global stability analyses of the model were conducted, alongside a sensitivity analysis to identify
key parameters influencing disease control. Furthermore, numerical simulations utilizing the
homotopy perturbation method were employed to evaluate the specific contributions of control
measures in reducing cholera transmission. The findings offer critical insights into designing
effective interventions, particularly by enhancing access to safe water and implementing targeted
public health strategies, to curb cholera outbreaks in resource-limited settings.

Keywords: Mathematical Modeling, Cholera Control, Epidemiology, Resource-Limited Regions,
Disease Dynamics

I. Introduction

Cholera is a life-threatening disease primarily
spread through the fecal-oral route, often
resulting from contaminated water and poor
sanitation practices [1]. The disease is caused by
the bacterium vibrio cholerae, which thrives in
environments with inadequate hygiene, leading
to acute diarrthea and severe dehydration that
can be fatal without timely treatment. Cholera
outbreaks impose significant burdens on
healthcare systems, increase mortality rates, and
deplete medical resources, particularly affecting

vulnerable groups such as children and the
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elderly [2, 3]. In Northern Nigeria, cholera
health

exacerbated by an arid climate, limited access to

remains a recurring public issue,
safe drinking water, and insufficient sanitation
infrastructure in [4]. The interplay of geographic
and socio-economic factors, combined with
environmental conditions during the dry season,
ideal

proliferation of vibrio cholerae, making disease

creates  an environment for the
control efforts particularly complex [5, 6]. To
better understand and mitigate cholera outbreaks
in such high-risk settings, it is essential to
develop models that capture the dynamics of
transmission. The

cholera Susceptib



le (S), Vaccinated (S), Exposed (E), Infected (I),
Recovered (R) and Bacteria (B) as (SEIRB)
model provides a comprehensive mathematical
framework for analyzing cholera spread in
regions like Northern Nigeria [7-9]. This model
critical factors,

integrates epidemiological

including bacterial transmission, population
immunity, and environmental influences on
bacterial survival, such as the environmental
bacterial persistence coefficient (c) [10]. Cholera
spreads through human-environment
interactions, especially via contaminated water in
areas with poor sanitation [11]. In Northern
Nigeria, dry-season water scarcity intensifies
human-to-human and environmental
transmission by [12, 13]. The environmental
bacteria coefficient, influenced by factors like
water quality and temperature, drives bacterial
growth. Population immunity, shaped by prior
exposure, vaccination, and health status, affects
vulnerability. The (SEIRB) model captures these
dynamics for targeted intervention in [14]. This
compartment represents individuals with no
prior exposure to cholera and no immunity,
making them highly susceptible to infection
during outbreaks. Vaccinated individuals, having
received the cholera vaccine, possess some
degree of protection, underscoring the
importance of vaccination in controlling cholera,
especially in outbreak-prone areas by [15-19].
Exposed individuals have encountered vibrio
cholerae but remain asymptomatic. They may
cither develop symptoms after the incubation
period or recover silently, depending on their
[20, 21]. Actively infected

individuals can transmit cholera to others, either

immune system
directly or by contaminating water sources.
Recovered individuals, having survived the
disease, gain temporary or permanent immunity,
influenced by the cholera strain and their health
[22]. The bacteria

condition compartment
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includes environmental teservoirs, such as

contaminated water, where the bacterium
persists and facilitates transmission [23]. The
(SEIRB) these

dynamics, offering insights into cholera's spread

model effectively captures
and persistence in Northern Nigeria. Varied
immunity levels, shaped by factors like age,
nutrition, and healthcare access, impact
vulnerability, with children, the elderly, and the
immune compromised being at greater risk [24,
25]. A key factor, the environmental bacteria
coefficient (c), determines how vibrio cholerae
multiplies in water. This parameter, influenced
by  temperature, nutrient levels, and
contaminants, escalates during the dry season in
Northern Nigeria [26]. Water scarcity drives
reliance on contaminated sources, worsening
bacterial growth and cholera risk [27]. The
model uses differential equations to describe
transitions among compartments (S, V, E, I, R,
B), incorporating transmission, recovery, and
environmental impacts. Accurate parameter
estimation, including that of (c), is challenging
due to wvariations in climate, sanitation, and
population density in Northern Nigeria, where
these affect

transmission [28, 29]. A multifaceted approach is

factors  significantly cholera
necessary, incorporating improved sanitation,
better water access, robust healthcare systems,
public awareness campaigns and international
[30].

simulations to fine-tune control strategies can

collaboration Leveraging  numerical
help develop solutions tailored to Northern
Nigeria’s unique challenges [31]. By addressing
immediate and long-term needs, these measures
aim to reduce cholera incidence, improve health
outcomes, and build resilient communities in

affected regions.

II1. Materials and Methods
A. Model formulation
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A total population N(t) is considered which is
divided into sub-populations of S(t) susceptible,
E(t) exposed, I(t) infected, R(t) recovered and
B(t) bacteria causing population. The level of
individuals migrating into the population atA,
effective contact rate of an individual 7 and the
level of the spread induced rate at o.
Transmission rate in cholera disease between the
two or more population of individuals being

exposed at # . The modification of the disease

capacity multiplicative effect is at a rate Cand
enlightenment through educational program
initiatives on the rapid spread on how deadly
cholera is at a rate ofw. Prevention on the
spread with a waning rate 7 and regular
treatment of cholera disease with antibiotics is at
rate of & . An infected individual are subjected to
recover at a rate of r and individuals that are
A-¢)

while that of infected are said to recover at a rate

hospitalized having been infected is

of (r+&). More so, set of bacteria individual

form back into the susceptible population
through water treatment occurs at rate of T
when immunity level is

high. Respective

individuals across the sub-population are

subjected to death naturally byu. Pictorial
illustration of this can be displayed from the fig.
1 and model equation is given by equation 1

below.

‘:'j_f:A_ﬂsa)u(t)—(r+w)8(t)+TB(t)—ﬂS(t)

‘j'j—'f=ﬂ8(t>l<t)—(c+n+u)E(t)

%:zS(t)+(c+77)E(t)—(8+5+r+/1)|(t)
1)
(jj_T:wS(t)+(r+g)l (t) - 4R (1)
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Fig. 1: Schematic Diagram of the Model.

By initial condition that0<T <1. WhenT =0,
vulnerable individuals are not immunized or
immunization does not affect the wvulnerable
compartment. The description of the model
parameters can be illustrated in Tablel as shown
below.

B. Existence and uniqueness of model
solution

The model in equation (1), which represents the
spread of an epidemic disease within a human
population, requires that its parameters be
nonnegative for its existence and uniqueness of
the model solution. To ensure that the system of
differential equations in equation (1) is both
mathematically wvalid and epidemiologically
sound, it is important to establish that the
model’s state variables remain nonnegative.
Equation (1) is considered well-defined at the
initial conditions are

initial point if the

nonnegative.

S(O): Soss E(O)= €. I(O): Iy, R(O)= Fo B(O): b
; In that case, the solutions of system (1) will
persist in being nonnegative throughout their.
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Table 1.Description of model parameters and
values

Variable Description

S(t) | Susceptible population

E(t) | Exposed population
I(t) | Infected population
R(t) | Recovered population
B(t) | Bacteria population
Parameter | Description Values

N | Total population 0.1625

A | Recruitment rate into the susceptible 0.001

population
[ | Transmission Coefficient 0.5
T | Vibro cholera multiplicative effect 0.2

T | Water treatment rate on rapid cholera  ().03

growth

Natural death 1.0
@ | Rate of educational program 0.0016
17| Immunity waning rate 0.113
& | Environmental bacteria capacity 1.0126
C | Treatment rate with antibiotics 1.1927
O | Induced death 1.0126
' | Recovery rate 1.8273

evolution, t > 0and that these positive solutions
are bounded. We thus apply the following
theorems

1. Theorem 1

Let (X, Y)be distinct points of normed linear

space (X,”---”)overm. Then the map of
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p:[0cR—> (X , || . ||) such that
p(A) = AX + (L— A)yis continuous on [0, 1].
Proof:

Let A, €[01]then p(4,) = A, X+ (1—A,)Y for
any 4, €[01],

[P(2) = P(Ao)| = [(A = 2 )x + (A= )Y

@
<[4 44|+ Iy1)

_¢
X1y
then the”p(/l)— p(/10)||<8. Therefore, p is

If &> 0is given, let 0 = .If|ﬁ—/10|<5

continuous atA,. Since A, is an arbitrary point
in [0, 1]. Then p is continuous on [0, 1]. Let X be
a linear space overR. If (x, y) are distinct points
of X, the set AX+(1—A)yliesin 0<A<L1

Hence, the solutions of system (1) are bounded
if we consider the total population. The variation
in the total population concerning time is given

by:
N (t) = S(t) + E(t) + I(t) + R(t) + B(t) ©)

The variation in the total population concerning

time is given by:

dN() _ d

“ar = gi SO+E® +10+RE) + BE) (4
Such that

dN(t) _

dt
®)

Hence, it is obtained that
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%+ 4N < A, using the integrating factor
concept on the total population N(t) and this
leads o NOE* = e 40 (g

y7i
Firstly,

A -
N(0)=—+ce #O) , resulting to
U

A
c=N(0)-— 0
U
Thus, substituting (6) into (5) as time

progressively increases yields:

lim N(7) < lim[£+ [N(O) - A}?‘-‘”} _A
[—o =m0 )U /t )U

)
A A
Then N(O) < —, then N(t) <—.
H H

This is a positive invariant set under the flow
described by (8) so that no solution path leaves
through any boundaryR° . Hence, it is sufficient
to consider the dynamics of the model in the
domainiRi. In this region, the model can be

considered has be mathematically and

epidemiologically well-posed. This shows that
the total population and the subpopulation
S(t), E(t), I (t),R(t),B(t) of the

bounded and is a unique solution. Hence, its

model are

applicability to studying physical systems is
feasible.

C. Positivity and Boundedness of Model
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This shows that the total population N (t) , and
the subpopulation S(t), E(t), I (t), T (t), R(t) of
the model are bounded and is a unique solution.

Hence, its applicability to study physical systems
is feasible.

1. Theorem 2

Suppose X = X,is a space of consecutive real

number and which are defined as
1

L(x.y) {ilxil J

ez1 (9

i=1

X with the metric is called ¢ space. If Y. |x%< o

absolutely convergent and

Ol

then X with this

L(le):[i|xi_yi| J >

metric is called an ¢” space.

Proof:
It can be checked that for each n:

0< xf + xj + x32 R x: < QX1‘+‘X2‘+‘X3‘+'“+‘Xn‘)2 (10)
This will result to;

R (11)
Therefore,

Xy |+ X, | [ Xs| + o [X,

1
0< (xf+x§+x§+...+x§)2 < 5

If i|xn| converges , that is i|xn|is absolutely
n=1 n=1

convergent, then

o <lgostonolh <l Pl |+t i = Y | <o0
i

Therefore,

2 2 2 2 ®
0<x, =X +X;+X5 +.+ X, ngl\xn@<oo (13)
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The sequence x is monotone increasing and Z“’: (x —y.)? <o Thus (X —V,)? € E2if
i i : i i

bounded above, it therefore converges. Thus

) 2
z X, converges absolutely, i. E if X, € &', then (X0, Yn) €7

n=1 Given that the
X, € E2where &' < &% In case of &' denote  S(0)=5,>0V(0)=v, >0,E(0)=¢, >0,1(0)=i,>0,7(0)=t, >O,R(0)=1, >0
the set of all sequences of X of real numbers ,andt>0, then the solutions S of the system (1)

will always be nonnegative. Let:

0
such that an is convergent absolutely. i.e
n-1

- {(S(r),E(z),l(r),R(t),B(t)) eR>IN@) < 5} (15)
Y7

Z|Xn|<oowhereas E?denote the set of all

n=1 If f,,i=12...5where f isa constant.
sequence  X,of real numbers such that . n,

0l
X, €& o x eflie £ &’ Further, if
1

- > [x,|di d
X, n% , then nZ:;|Xn|dlverges and thus ﬂ m@q‘ J |c+5+)4<oq

0
Zxﬁ < oo converges. From the proceeding
n=1

dq (B+p+7+0) <oy

A<

A<
J (<

‘(£+5+r+)u)| <on, j‘ :‘q <°°-%J :|q <

Bty

0

- 1

X g&h But Z X2 = z_s converges,
n=1 2
n 4

n=1

<o et <o

implying that X, €&?. We conclude that
Ecéfand thus E'#E2 I (X,,Y,)are

sequences of real numbers, then; £ |“’\<°0 df4 |0|<.30,‘i’f_‘;4 (- H«)‘@O df. _| |<Dh ﬂ [0 <on
1 1
Z(x,-—y.)zSzx,2+ZJ’f+2[Z #Hz }’,2] (16)
n=1 n=1 n=1 n=1 n=1
(4 df. df df.
L) =<2 0 <o L o < ) - ) < | - <o

Therefore if Z Xi2 <ooand Z yi2 < oo then
P -

Z(Xi ~y,)? <ofor all n. The monotone Equation (16) confirms that system (1)
n=1 bounded, invariantly and attractively influence

o) . 5
increasing  sequence {Z (X, —y,)? } is then thebounded region of R
n=1

D. Cholera- -Infi Equilibrium S
bounded above and hence converges ie. olera-Non-Infected Equilibrium State
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The equilibrium state of non-infected individuals
with cholera signifies a system devoid of vibro-
cholerae, encompassing individuals categorized
as infected (I), exposed (E), and recovered (R)
|=E=R=0.

0=A— A1) (r+w)S{E)+TB() - £5(t)
0=/45@)1(t)—(c+n+)E()

0=wS{t)+(c+n)EM)—(e+o+r+ )l ()
(17)

0=wS(t)+(r+&)l(t)—R(t)
0=—(T+u)B

At no outbreak of tuberculosis, the class of the

disease is subjected ast =0, from 21),

0=A-/S)I(t)—(r+w)S(t) +TB(t) — £5(t)

, R=0.where, S :A

u

Thus, the disease-free equilibrium yields:

(S,E, I,R):(S0 :é,E(J =0,1,=0,R, =0j (18)
u
E. Steady-State Prevalence

It is crucial to highlight the dynamic nature of
cholera prevalence, especially its central role in
sustaining outbreaks within a population. To
analyse the system at equilibrium, consider the
set of equations in (1), where the equilibrium
points represent the endemic states of cholera

prevalence. ® =(S*,E*,1°,R*,B*) andt >0

. 1+eMu+S)E + RNT+7+0)
T B-u+)(T+y+ofu+d+e u+y+T)
£ =1&E+5+(ol7+;/+(0)—ﬁ(/1+3+o)t(o+;/+r)
B-uo+S+r\T+y+o)u+S+c)u+y+T)

- (u+S+c\E + R + 0T +y+6)
- (T +}/+a))(,u+5+r)(,u+)/+T)
(19)
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R* _ \/(u+5+a))(gE*+éR*)+(T +y+o)
 (THy+rfu+s+ofu+y+T)

(r+,u+§)(gE* +6R*XT +7)

B® =
T+ct+rf\u+d+o)u+r+T)

F. The Disease Threshold R.

The basic reproduction number, denoted asR. .

To quantify the likelihood of new cholera

infections arising from a single infectious
individual in a previously unexposed population,
we apply the next-generation matrix approach to
construct the system outlined in (1), with a focus

on infectious compartments. In this method, the

F and V matrices are computed, representing
the rate of new infections and the rate of
into and out of the infected

This

captures the dynamics of cholera transmission

transitions

compartment, respectively. approach
and reinfection, emphasizing the importance of
treatment as a critical control measure. These
matrices are obtained using a complex derivation

from  the System (1),
R.=p(G-Al) taking G=FxV'and pis

the spectral radius of the matrix |G —Al|.From

equations  in

the system of equation (1) it is obtained for
matrix

Cc _ of, (x;) _ ov(x)
F andV 'Fi_(—axj jVi _[—ax. ]

]

(20)

And such that

(B
f —( 0 ] and
- 47+ HEQ)
SA)+(C+n)ER)—(e+0+r+ p)l(t)

@D
Then,
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asymptotically stable R. <1, otherwise R. >1if

PA

— c+n+ 0
F=| u |V= (C+n+p) and only if the disease state prevails
0 (c+n) (s+0+r+u)
o Proof:
Fy = I {}u 0}[(‘7 +p+) 0 ] The disease-free equilibrium obtained as the
(crurefurrsT)| o\ (ctm  C+5tute) Jacobian matrix of the system of (1) is evaluated
Boh at the disease free State using the linearization
R, = thus;
u(r+u+elu+y+T)S+r+c)
(-B+T+o+ 1) 0 -p 0 0
(22) yii —(c+n+u) 0 0 0
It results that the basic reproductive ratio i, = v e+n)  —(e+d+r+m) 00
. . C g 0 (r+&) 0o -
determines the number of infected individual f)) 0 ’ ga 0 - (.!-f )
migrating to the subpopulation of exposed and (23)
infected, as this affect the level of recovery form
the spread of tuberculosis. The leading (hrrrotu-2 0 e 0 0
g —(c+n+u)-2 0 0 0
eigenvalue of the non-invariant is the basic r (c+m) —(e+S+r+m) -4 0 0
reproduction number of the disease model (: 2 (";E) o '0_}' ¥(1'+0;1)—4‘
G. Local stability of the disease-free state
We examined the local stability of the disease- ' '
free state for cholera by analysing the minimal Computing for the eigenvalues,|Je, — 4 I‘ =0,
recurrence rate impact. When the recurrence rate  from the Jacobian matrix the respective eigen
R. <1, the disease declines, to determine  values of the matrix can be obtained as;
stability 'u'sing a. Jacobian matrix and a 3 (,U ty +T)— J) S
characteristic equation. T ( 5) I 0 (24)
Lenma 1 7y —Wro)-
The disease-free state of the model is locally
(u+y+T)- 2 - (u+d+0)-1,)=0,4, =—(u+c+8) A =~(u+y+T)A, =—(u+r+T)—(u+e)- A, A|=0

(-
Ay =—(u+e+8) =, A =, Ay =—(u+e+1) Ay =~(u+y+T) A, =—(u+ 5+ )

The negativity of the invariants region with asymptotically Stable if and unstable otherwise if

respective eigen values obtained for the model  p (4
equation is asymptotically stable ’
Proof:
H. Local Stability of Endemic Equilibrium ~©
Point Suppose,

Theorenr: The regional resilience of the petsistent S=x+$§",E= y+ E',I=z+1",R=a+R",B=b+B’
equilibrium of the proposed model is locally (25)

Linearizing equation (1), is then obtained as
Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)



j;=—2ﬁ2(1+2)_1 — ue+higheorder-nonlinederms...
ay
dt
%j= &+(u+y+w)z—Tz+da+higheordes-nonlinederms...
da . .

& =(T'+y+0)z—(u+0+c)a+higheorder-nonlinederms...
d

E:—zb—;b+higheordeﬁ—nonlinea:erms...

(26)
Jacobian matrix of the system of,

—(Bo+r+o)™" + 1) 0 QAU+ +0) + 1) 0
Be+r+0)*+1) -(u+e) QBr+c+) ™+ 1) 0 "
0 (e+7+m) ~(u+y+T) 0
0 0 (;/+(o+r+c)' -(U+d+0)

27)

The resulting eigenvalue of the above matrix is
obtained as;

(~QR&+r+O+ 1) —-AN~e++1) AN —T+y+1)— AN (S +p+0)—2,) =0}

If

a=—2p0+a) b=—(c+ ) e=—(T+y+1),d=—(5+pu),e=—u

(28)
It is therefore obtained that
@-A)b-A)(c—-A)d—-A)e—-A1)
A% =[(a+b)c+d) +ab+cdeld *~[abe(c + d) + (b +e) + dla+¢)]A°
[bla+b)+(c+d)+ald + )] 4 *+[ae + ad + bd + ac] A + abede= 0
(29)

Therefore, the persistent resilience of the

respective Eigen values in the model invariance

region of R, is asymptotically stable.

I. Numerical simulation

We conducted numerical simulation on the
mathematical model, we create the following
scheme  of adomian

iterative Laplace

=2/kA7+w+5)" —(u+e+r)y+higheorder-nonlineaerms.|.
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decomposition method for the model equation.
The Laplace adomian decomposition method
was employed to computationally analyse the
epidemic model. MAPLE 18 software facilitated
the generation of iteration formulas for each
These
enabling  the

compartment. formulas were then

iteratively  solved, numerical

evaluation of the model's dynamics and
providing insights into the epidemic's behaviour
and progression. Taking the Laplace transform

of both sides of the above equation.

L_‘;—f_ = L[A]-L[AS()1(t) - (= + @)S (1) + TB(t) - 15 (1)]
e

L [ B O10]-Le+n+ wE®]

L_% = L[S(t) + (c+n)EM®)]-L[- (s + 5 +r+ )1 ()]

) (30)

[dR

L E} = L[@S(t) + (r + &)1 (t)]- L[zR(1)]

92 |-t ae]

Substituting into (30) to yield
mL[S(t)]= S(0) + A — L[BS ()1 (t) - (z + @)S(t) + TB(t) - £S(1)]

mLE(t)]= E(0)+ L[BS®)1 )]~ L{(c+7+mE®)]

mL[1 ()= 1(0)+ L[S (1) + (¢ +mE®]- L[ (e + 5+ + )1 ()]
mL[R(t)] = R(0) + L[S (t) + (r + &)1 (t)] - L[«R(t)]
mL[B(t)]= B(0) + L[~ (T + 1:)B] (31)

Subsequently, iteration result obtained form the

above equation is deduced as;

isn(t)zsomﬂ-{iq_aiﬁn_¢1§sn+¢zivn_,,§sn}]
k=0 m k=0 k=0 k=0 k=0
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Z((l—f)ﬁ) ﬂ.zf +BZI —/IZE

k=0

)

ZE @ =v, +-n+1_“|—L[

SO =e+L L4103 e, - L[B-k+ w1, |
k=0 \m k=0 k=0 ]

(32)

€ )

SUB, (1) =i, + L’l[% +La>S E, — L[(p+ 0> an

The initial approximations of each class are

+LéZE —Llia+u+y+o, )]ZR

k=0 k=0

ZR,,(: =i, +L

k=0

given by;

Sy(0) =5, + ALE (1) = €y, 1, (1) = iy, R (1) = 1, . B, (1) = b,

Now, compating the coefficientsn=1. Using
the recurrence relations obtained from the

iterations. Compartmentally it is obtained that

[ 1 1 1_
—,Bso+rle°)r+! ——oaoa——/L\ =9

\

$1() = (Aigsy — piso

5 ¢
)

E (1) = (riys, — pte, — &, )t+%1’l}ilt:

L) =kE-(r+pu+y+c))I(=8y—r+pu+y+cyeyiy+de, )t

Ry(t) = (= pory + T)y59vy + (T + p)i, }l

/

' | —E+ 0+ — (0+ /1)10}

\

B(H=

<

Lo

(33)

R,(t) = (_ My + 717,80V, + (7 + /U)io)t

B,(t) = %852(—8+ﬂr0 +%(5+,u)iojt

Further iterations are done to obtain successive
iterative terms at n=2

B 1 1 loa' l'sﬂ laz‘ﬂ\"
| o sgfy + 05y py = sy + = 0SBy = S iy
b 3! 0Py =5 WSely + 5 SeP = 0Py |

a0y i W e g
i ‘3/"53 + By + By ‘;19'53 ‘;ﬂlﬂ:S: ';ﬁ1ﬂ:"¢ ';ﬂ:"'a |

(1 oy o 2
+| =10+ - diyn0+ —aiy T+~

1
5 e aytp- - ae,fo + awﬁ

D3 /1 s ﬂm -ﬂl x--ﬂrm
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, 1 1, I, | | 1 5
B = =3B+ 30 s, ot =3 s+ P Buss =3 BB+ L B0 I
l 1 | 1 3
+ —ga’-'u”ﬁ] ‘;ﬁ;#"f—gﬂ ?T*'gﬂszﬁ. l
I 5., 1. 2 . 1. 1 | I 1. 3
I,(n= —ga i :r—Ew(,:ré—gatuszgalufrp+§ae(,mj, —g,u :rfgmuzﬁ] '

1 5, 1 2 . | 1
+ —Ea i s[,—zmsﬂ—gms[,y[,—gmsop“+2msumn—,u ;e[,ﬁt+ aie,o” |t
(34)
1 1., 1 1,
{zom'so+§§‘io+§;§o—55deo+5;£‘io—;m'o .
R, (¢ ———t}“ i+ t*
© 6 | —uoi, += pli —l,ooie 1o
[ M M R
1 1., 1 1,
{zcroa'so+E§‘io+§;§O—E§a‘eo+5;£‘io—;mo )
B, (———t}“i‘9+ t*
20 6 D T 1,
1‘!“”0"’59’0_590’%_5‘7 &,

and so on. This can be further till desired
number of iterations are obtained. Thus, the
solution to each model

obtained raw

compartment is obtained as:

S0 =Y 5,01 (10) =Y v, (0, E0) =Y e, (0,106 = Y, (0, Ry = Y 5, (0)

k=0 k=0 k=0 k=0 k=0
(35)

the

corresponding variables and parameter values,

Evaluating these series results using

S(1) = 500.012 - 30,4440 +1.1315290300r* —-0.050750298531° —3.509616000x 107 /*
—5.179149070x107"/*

E(f) =65+18.1785¢ =1.171778775 * + 0.0492956076 5 +5.087939775 x107¢* +3.509616000 x 107’

1(£)=23.0.9-60+0.0292567500¢* - 0.0008440367798¢ —4.378044000x10~°¢*
R(r) =23.0.9-60r +0.0292567500¢* —0.0008440367798¢ -4.378044000x10%#  (36)

B()=14-0.0155¢-0.005054500000¢* +0.00014582425417 +2.473075000%107¢*

the of
iterations, comparison of control intervention

Hence from results successive
effects on sub-populations in its graphical

illustration depicts as;

Results and Discussion
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From the simulation of iterative values of the
model formulation using Laplace adomian oo |
decomposition method these are computed
graphically with the help Maple-18 software as

:

for respective compartments. The results of Fig.
2 to Fig.5 represents the effects of the target
parameters on the compartments of the model

Recovered Class
N

solution, these are graphically illustrated as:

. T T T T 1
timz (months }
[—r0—r~03— =06 =09]

Fig 4. Water Treatment on Recovered Population
brings about a Decline in the Disease Population

fime (months)

[ c=0 —— c=0.3 c=0.6 — c=0.9]
3
Fig 2. The Effect of Antibiotics (c) on the é
Exposed Population 4
N\ 100000 -
410 4
T T 1
0 03 5
001 time (months ) ; :
456 = p=0 = p=03 = p=06 — p=09]
‘§ 380 . . . . .
& Fig 5. Reduction in Environmental Capacity Effect
= 370 - . .
on the Susceptible Population.
360 +
350 4
0 . . ; I A. Discussion
] 10 20 30 40 50
fime ({months)
[ c=0 c=0.3 c=06 c=079] It is obtained that Fig 2: The effect of antibiotics

i i l in reducing th d of
Fig 3. The Effect of Antibiotics (c) on the 18 @ prominent toot in reducing the spread o

Infected Population cholera to the vulnerable population. Fig 3:

Depicts the effect of antibiotics on the infected
population as these bring about a decline in the
outbreak of cholera. Fig 4: Shows that treatment
of water in this region will bring about a drastic
measure to the control of cholera as the level of
the spread reduces in the population while fig 5:
Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UJEES)
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sensitization on the set of

level of environmental capacity and
vulnerable
populations reduces as it brings about a rapid

decline in the spread cholera.

IV.  Conclusion

The integration of mathematical modeling with
comprehensive control strategies has been
instrumental in mitigating cholera spread in
remote Nigerian areas during the dry season.
Incorporating educational programs, antibiotics,
water treatment, and environmental cleanliness
into the model has led to significant progress.
These initiatives have raised awareness, enabled
prompt treatment, ensured access to clean water,
and improved sanitation, collectively reducing
the impact of cholera outbreaks. Continued
collaboration and targeted interventions are
crucial for sustaining these efforts and enhancing
cholera in  vulnerable

resilience  against

populations.

This research underscores the critical need for

targeted interventions to address cholera
outbreaks in remote areas of Nigeria during dry
Based on the

recommended to implement enhanced water

seasons. findings, it is
treatment infrastructure, promote sustainable
farming practices and conduct community-
Additionally,
should
collaborate with local communities to develop

specific educational programs.

policymakers,  health  practitioners
and implement contextually relevant preventive
measures. This comprehensive approach will
contribute significantly to mitigating cholera
spread and building resilience in vulnerable
regions.
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