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A Novel Mathematical Model Evaluating the Impact of Saturated Treatment 

Response, Vaccination and Anti-Biotic Resistance on Transmission Dynamics 

of Typhoid Fever 

Ayoola, R. G., Kolawole, M. K. and Odeyemi, K. A. 

Abstract This research presents a novel mathematical model for evaluating typhoid fever 

transmission, incorporating treatment response, vaccination, and antibiotic resistance. By 

integrating these factors, the model provides insights into disease control. We analyze the impact of 

saturated treatment response, vaccine efficacy, and antibiotic resistance management. A qualitative 

study confirms the model’s epidemiological soundness through uniqueness, positivity, stability, and 

boundedness analyses. Sensitivity analysis, based on the reproduction number, identifies key 

parameters influencing disease progression. Using next-generation matrices, we establish that 

)1( 0 R  ensures disease-free equilibrium stability, while )1( 0 R  leads to instability. Numerical 

simulations via the Homotopy Perturbation Method highlight the importance of high vaccination 

coverage for herd immunity. Findings stress the need for integrated strategies, including 

vaccination, improved treatment, and responsible antibiotic use. The study concludes that 

treatment saturation, vaccination, and antibiotic resistance are key considerations for effective 

typhoid fever control. 

Keywords: Typhoid Fever Transmission, Mathematical Modeling, Vaccination Efficacy, Antibiotic  

  Resistance, Sensitivity Analysis 

I. Introduction

Typhoid fever remains a major public health 

concern, particularly in regions with inadequate 

sanitation and limited healthcare access. The 

disease, caused by Salmonella Typhi, is primarily 

transmitted through contaminated food and 

water, leading to severe health complications if 

not properly managed [1]. Effective control 

strategies require a comprehensive 

understanding of the transmission dynamics, 

incorporating crucial factors such as treatment 

response, vaccination efficacy, and antibiotic 

resistance. Mathematical modeling has emerged 

 

 

 

 

as a powerful tool for studying infectious disease 

transmission, offering valuable insights into the 

effects of various intervention measures [2, 3]. 

We introduces a novel mathematical model that 

evaluates the impact of saturated treatment 

response, vaccination, and antibiotic resistance 

on the transmission dynamics of typhoid fever 

[4]. By integrating these critical factors, the 

model provides a quantitative framework to 

assess disease progression and control strategies. 

One of the primary concerns in typhoid 

management is antibiotic resistance, which 

reduces the effectiveness of treatment and 

complicates disease control efforts [5]. 

Additionally, vaccination plays a pivotal role in 

reducing infections, while treatment saturation 

where the healthcare system reaches its capacity 

can significantly influence disease spread [6]. 
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This research encompasses extends to analyzing 

the epidemiological soundness of the proposed 

model through qualitative assessments, including 

stability analysis, positivity, uniqueness, and 

boundedness. Sensitivity analysis, based on the 

reproduction number )( 0R , identifies key 

parameters influencing disease progression [7]. 

Using next-generation matrices, the study 

establishes the conditions for disease-free 

equilibrium stability and the implications of 

exceeding the threshold for sustained 

transmission [8-10]. Furthermore, numerical 

simulations via the Homotopy Perturbation 

Method highlight the significance of high 

vaccination coverage in achieving herd immunity 

by [11]. This research emphasize the need for 

integrated approaches combining vaccination 

campaigns, improved treatment accessibility, and 

responsible antibiotic usage [12]. By addressing 

these critical factors, the study aims to guide 

evidence-based interventions for mitigating the 

burden of typhoid fever and strengthening 

public health efforts in endemic regions [13, 14]. 

The critical role of vaccination, treatment 

response, and antibiotic resistance management 

in controlling typhoid fever [15]. The 

mathematical model provides valuable insights 

into disease dynamics, emphasizing the 

importance of high vaccination coverage and 

responsible antibiotic use. Sensitivity analysis 

identifies key parameters influencing 

transmission, while numerical simulations 

confirm the effectiveness of integrated control 

strategies [16, 17]. These findings reinforce the 

need for a comprehensive approach, combining 

vaccination, improved treatment, and antibiotic 

stewardship, to achieve sustainable disease 

control and prevent future outbreaks 

 II.  Materials and Methods 

 

A. Model Formulation 

We develop a deterministic mathematical model 

on the transmission dynamics of Typhoid fever 

based on the epidemiological status of 

individuals in the population. The population are 

subdivided into different epidemiological classes: 

Susceptible (S), Carrier (C), Infected (I), 

Recovered (R) and bacteria (B) subclass. 

Recruitment into the susceptible population is at 

the rate and also from recovered class by losing 

temporary immunity with   rate. The force 

infection of the is λ natural death rate occurs in 

all the classes at a rate µ, the disease induced 

death for infected individuals is a rate d. The 

parameters v, r, and ẟ represents the vaccination 

rate, antidrug resistance and saturated term 

respectively. The mathematical model for the 

system of non-linear differential equation is:  

SRS )('    
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Whereas
)(

1

BK

Bv


 the initial condition of 

0  

B. Existence and uniqueness of model 

solution 

Feasible Region; we obtained the feasible 

Region, in which the model solution is bounded. 

First we considered the total human population 

(N) in model solution where N = S + C + I + R 

+  B. 
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Adding the above system of equation (2), we 

have  

 

ICRdIICS
dt

dN
21  

          (2) 
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 dI - IC 21    

At no outbreak of disease, C = 0 = 0, becomes 

N
dt

dN
  

 N
dt

dN
         (3) 
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Thus, the feasible solution of the system 

equation of the model enters and remains in the 

region. This is a positive invariant set under the 

flow described by (8) so that no solution path 

leaves through any boundary 5

 . Hence, it is 

sufficient to consider the dynamics of the model 

in the domain 5

 . In this region, the model can 

be considered has be mathematically and 

epidemiologically well-posed. This shows that 

the total population and the subpopulation 

)(),(),(),(),( tBtRtItCtS of the model are 

bounded and is a unique solution. Hence, its 

applicability to studying physical systems is 

feasible 

C. Positivity and Boundedness of the Model 

Solution 

We let the initial condition of the model to be 

nonnegative and now, we also proof that the 

solution of the model is also positive. 

Theorem, let 

 

 ;0,0,0,0.0;),,,.,( 00000

5  BRICSRBRICS

 

Then the solution of {S,C,I, R,B} are positive 

for t>=0. 

Proof, from the system of differential equation, 

we solve the equation one after the other. 

First equation; 

 SRS )('   

()(' tS )() tS    (5) 

0)()('  tSS   

(4) 
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Then solving using method of integrating factor 

and applying condition, 

We obtained 

dttS tt 0)( )()(  
    
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CtS t   )()(   

When t=0,  

S(0)>=C 

0)( )(

0   tStS    (6) 

Then by taking the second equation; 
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Also, we took the third equation of (3.2) which 

is  

I

rI
IdCSI











1

)1(
)()1( 2

'  

We consider 
I1

1
and this can expanded in 

series form 
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Similarly, we took the fourth equation of which 

is  
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tbBtB


   (10) 

This completes the proof of the theorem, 

therefore, the solution of the model is positive 

Hence the solution is bounded, therefore it is 

well- posed and represent a physical problem. 

 

D. Model Disease Free Equilibrium 

To find the disease free equilibrium we equate 

right hand side of the model to zero, evaluating 

it at C  = I = R = B = 0 and solving for the non-

infected and non-carrier state variables. 

0

0)(
1

)1(

0
1

)1(
)()1(

0)(

0)(

21

2

1


















BIC

vSRC
I

rI

I

rI
IdCS

CS

SR

b















 

 

 

 

 

 

 

 

 

 

 

 

F. Derivation of Basic Reproduction 

Number of 0R  
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E. Endemic Equilibrium Point 

To obtain an endemic equilibrium E , when I ≠ 

0 
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There are two diseases state but only one way to 

create new infections. Hence, exposed and 

infected compartments of the model are 
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involved in the calculation of 0R  from equation 

(3.2) 
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iF is the new infections, while the iV  are 

transfers of infections from one compartment to 

another.
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The most positive Eigen value is our R0, 

therefore 
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G. Local Stability of Disease-free 

Equilibrium 

The disease free equilibrium of the proposed 

epidemic model is locally asymptotically stable if 

10 R and unstable whenever 10 R
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The Jacobian matrix of the system of (3.2) was 

considered and differentiate each compartment 

with respect to (S, C, I, R, B) and applying 

Lassalle’s principle. 
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Using Atangana Belame invariance principle by 

lower triangular matrix, 

We obtain 

0
0

0)(
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4
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   (18)
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Then from () we obtained  
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Then this results to, 

 

 

 

 

 

 

 

 

 

 

 

Since all the eigen values are all negative, hence 

the disease free equilibrium is locally 

asymptotically stable. 

 

H. Local stability for endemic 

 

Theorem: The Endemic Equilibrium of the 

proposed epidemic model is locally 

asymptotically stable if 10 R and unstable 

otherwise.  

Proof: 

We linearized each of the compartment in  

Let   
  BbBRaRIzICyCSxS ,,,, ***

 

 

 

 

 

 

 

 

Then we substitute to the above equation (20) 

 
 

Then we differentiate each compartment one by 

one and take the Jacobian- matrix 
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The characteristics polynomial J is given by  
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Comparing equation (3) with equation 

10 a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the Routh-Hurwitz criterion, it can be 

seen that all the eigen values of the 

characteristics equation above have negative real 

part. 

Then the endemic equilibrium is locally 

asymptotically stable. 

I. Global Stability At Disease Free 

Equilibrium 

 

To investigate the global stability, consider the 

Lyapunov function. Then From equation we 

analyse 
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By LaSalle’s principle, at equilibrium,

)(

1

v

v




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
, as t→∞, as 

)( v
So







the 

global stability of the disease free equilibrium at 

as t→∞ it is stand that whenever R0 <1, is 

Globally Asymptotically stable. 

J. Global Stability for Endemic 

Equilibrium 

Theorem: The model is said to have no periodic 

orbit 

Proof: Employing the Dulac’s criterion as 

adopted in 2021 by Ahmad et al. 

Define M = (S, C, I, R, B). Be defined as the 

Dulac’s function as; G= 1/SC 

Let GM be computed as follows; 
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Then )(GM
dt

d
is obtained as follow; 

 

 

 

 

 

 

 

 

 

Now, we consider the parameter with and 

without state variables i.e those without are 

negative invariant as those with states variables 

are neglected not relevance to SC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

It implies that the system has no closed orbits. 

Epidemically the non-existence of periodic 

orbits implies that there are fluctuations in the 

number of infective which makes it difficult to 

allocate resources for the control of the disease. 

K. Sensitivity Analysis of 0R  

We are to test for the sensitivity of 0R  by 

differentiating R0 with respect to all the 
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parameters in R0. The normalized forward 

sensitivity index is defined as 
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L. Numerical Solution of the Model 

with Homotopy Perturbation Method 

Since we intend to numerically simulate the 

mathematical model, we intend to provide an 

approximate solution using the Homotopy 

perturbation method since there is no associated 

exact solution to the model. The analysis of the 

HPM will be given. 

),()(  kA  .                                    (29) 

Subject to the boundary condition 

Ω( 0), n .                                  (30)                                                       

Operator  represents the differential 

operator,   denotes the boundary operator, 

k( ) is an analytic function,  is defined domain 

bounded by  , and n  is a normal  

vector derivative drawn externally from  . 

Thus we can separate the operator )(A  

into two:  

),()()(  TT NL                            (31)                                                      

The operator )(,)(  TT NL   denote the linear 

and nonlinear term respectively such  

that equation  (34) implies: 

),()()(  kNL TT  .                                                                                            

We can construct a Homotopy for (34) so that  

                                               

Where p is an embedding parameter which can 

undergo a deformation process of 

changing from [0,1] 

Equation (41) is further simplified to obtain: 

 

 

 

 

 

 

.0)()()1,(  kfAfH     

We can naturally assume the solution (44) as a 

power series such that  

)(..........)()()()( 2

2

10 tfptfptpftftf n

n           

     (33)                                                 

Evaluating (44) with (45), and comparing 

coefficients of equal powers of p,  

The values of )(),(),( 210 tftftf are obtained by 

solving ordinary differential equations.  

Thus, the approximate solution of (33) is: 

......)()()()(lim)( 210
1




tftftftftf n
p

                  

     (34) 

i. Saturation analysis and convergence 

Here, to implement the application of the 

Homotopy perturbation method in solving the 

proposed model while taking care of the 

inhibitory parameter, unlike several other 

existing, we conduct an analysis of the saturation 

and further examine its convergence for usage. 

Hence, consider
I1

1
, This can be expanded in 

series form such that  

)(01)1( 6554433221 IIIIIII   

          (35)               

Based on the convergence of this series it is 

obtained that,      

I <1, that is 
I

1
                                                                                                
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To conduct numerical simulation on the 

mathematical model, we create the following 

correctional scheme for the model equation 

0)()1( 
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Simplifying the equation (39) yields: 
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Evaluating (53) using (54) and comparing 

coefficient of np  

:0p
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Solving (54) yields 
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Similarly comparing the coefficients of p1  
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Solving the system (39) yields: 

At p1, the first iterations are obtained as  

tvsrssts )()( 00001  
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At p2, the second iteration are obtained as 
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III. Results and Discussion 

From the simulation of iterative values of the 

model solution via homotopy perturbation 

method these are computed graphically with the 

help Maple-18 software as for respective 

compartments The results of Fig. 2 to Fig.6 

represents the effects of the key parameters on 

the compartments of the model solution. Hence 

these are graphically illustrated below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Analysis of Vaccination Uptake on 

Susceptible Population 

 

Fig 2: Dynamical Response of Vaccination 

Uptake on Recovered Population 

 

Fig 3: Dynamical Response of Infected Patients’ 

Therapeutic Actions at 0.5 Rate of 

Drug Resistance 
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A. Interpretation of the Graphs 

Here, we discuss the outcomes of the study and 

the conducted numerical experiments. To begin, 

Table 4.11 Based on the results, we observed 

these parameters  and21 ,, have a positive 

sensitivity indices on 0R  as a consequence, 

increment in these values will raise R0 and 

lowering these vales will decrease 0R . Thus, 

strategic ways applicable to lowering the rate of 

the parameters, specifically hose with higher 

index such as   should be put in place. 

Furthermore, the index indicates that the 

discharge rate of bacteria from carriers and 

infections should be closely monitored to 

minimize the rate at which the environment get 

contaminated so as to avoid increase 

susceptibility of vulnerable population. Lastly, 

increasing the screening rate will lower the 

growth of 0R  and consequently reduce disease 

transmission. 

 

Fig 4: Dynamical Response of Recovered 

Patients’ Therapeutic Actions at 0.5 Rate 

of Drug Resistance 

 

 

Fig 5: Dynamical Response of Infected 

Population to the Therapeutic at 0.5 

Drug Resistant Rate 

 

 

 

Fig 6: Dynamical response of recovered 

population to the therapeutic at 0.5 drug 

resistant rate 
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Fig. 1 shows the dynamics of susceptible 

population such that as v increases from 0.0001 

to 0.0007, the susceptible population increases. 

The implication of this is that increase in 

vaccination will increase the population of the 

susceptible. We conclude that the number of 

individuals who have been with typhoid fever 

disease before the application of vaccine has 

gone down due to impact of vaccine on infected 

individuals. 

Fig. 2 reveals the simulated results the model 

variables at 50% using antibiotic resistance on 

Transmission dynamics of Typhoid fever, and as 

v increases from 0.07 to 0.1. it clearly show that 

recovered population has increased to maximum 

level . Therefore we conclude that applying 

vaccine in eradicating typhoid fever disease from 

the community is effective in a specified period 

of time. 

Fig. 3 clearly shows that the infectious 

population drastically reduces to bare minimum 

as  therapy implementation increases. 

Consequently this affirm that this strategy is 

effective in eradicating the disease from the 

community as time progresses. 

Fig. 4 reveals that despite the level of antibiotic 

drug resistance of infected individuals a great 

response is observed concerning the efficacy of 

treatment as infected population drastically 

reduces and Recovered individuals grows to 

maximum level.  

Fig. 5 It clearly shows that the infected 

population has reduced to bare minimum at the 

end of the implementation of saturated 

treatment response. Therefore we conclude that 

this strategy will eradicate typhoid fever disease 

from the community as time progresses. 

Fig. 6 clearly shows that the recovered 

population has reduced to bare minimum as 

saturated treatment response increases from 

0.00001 to 0.00007, which indicate that saturated 

treatment response has reach it saturation point 

and at that point it can aid complication  in 

treatment. 

IV. Conclusion  

This research presents a comprehensive 

mathematical model for understanding typhoid 

fever transmission, considering treatment 

response, vaccination and antibiotic resistance. 

Through qualitative analysis, we establish the 

model’s epidemiological reliability, 

demonstrating stability conditions for disease 

control. Sensitivity analysis identifies key 

parameters influencing disease spread, while 

numerical simulations underscore the role of 

high vaccination coverage in achieving herd 

immunity. The results highlight the necessity of 

integrated strategies, combining vaccination, 

effective treatment and responsible antibiotic 

use, to curb typhoid fever. Ultimately, this 

research emphasizes the importance of 

addressing treatment saturation, vaccine efficacy 

and antibiotic resistance for sustainable disease 

management. 

We recommend a multifaceted approach to 

typhoid fever control, emphasizing widespread 

vaccination, optimized treatment strategies and 

responsible antibiotic use. Health care 

practitioners should prioritize vaccine 

accessibility also must ensure effective treatment 

and monitor antibiotic resistance. Public health 

initiatives should focus on awareness campaigns 

to promote hygiene and vaccination. Further 

research should refine mathematical models to 

enhance disease prediction and intervention 

effectiveness. 
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