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A Novel Mathematical Model Evaluating the Impact of Saturated Treatment
Response, Vaccination and Anti-Biotic Resistance on Transmission Dynamics
of Typhoid Fever
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Abstract This research presents a novel mathematical model for evaluating typhoid fever
transmission, incorporating treatment response, vaccination, and antibiotic resistance. By
integrating these factors, the model provides insights into disease control. We analyze the impact of
saturated treatment response, vaccine efficacy, and antibiotic resistance management. A qualitative
study confirms the model’s epidemiological soundness through uniqueness, positivity, stability, and
boundedness analyses. Sensitivity analysis, based on the reproduction number, identifies key
parameters influencing disease progression. Using next-generation matrices, we establish that
(Ry <1) ensures disease-free equilibrium stability, while (R, >1) leads to instability. Numerical

simulations via the Homotopy Perturbation Method highlight the importance of high vaccination
coverage for herd immunity. Findings stress the need for integrated strategies, including
vaccination, improved treatment, and responsible antibiotic use. The study concludes that
treatment saturation, vaccination, and antibiotic resistance are key considerations for effective

typhoid fever control.

Keywords: Typhoid Fever Transmission, Mathematical Modeling, Vaccination Efficacy, Antibiotic
Resistance, Sensitivity Analysis

I. Introduction

Typhoid fever remains a major public health  asa powerful tool for studying infectious disease

concern, particularly in regions with inadequate  transmission, offering valuable insights into the
sanitation and limited healthcare access. The  effects of various intervention measures [2, 3].
disease, caused by Salmonella Typhi, is primarily =~ We introduces a novel mathematical model that

transmitted through contaminated food and  evaluates the impact of saturated treatment

water, leading to severe health complications if
not propetly managed [1]. Effective control

strategies require a comprehensive
understanding of the transmission dynamics,
incorporating crucial factors such as treatment
response, vaccination efficacy, and antibiotic

resistance. Mathematical modeling has emerged
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response, vaccination, and antibiotic resistance
on the transmission dynamics of typhoid fever
[4]. By integrating these critical factors, the
model provides a quantitative framework to
assess disease progression and control strategies.
One of the primary concerns in typhoid
antibiotic which
reduces the effectiveness of treatment and
efforts  [5].
Additionally, vaccination plays a pivotal role in

management is resistance,

complicates  disease  control
reducing infections, while treatment saturation
where the healthcare system reaches its capacity

can significantly influence disease spread [6].



This research encompasses extends to analyzing
the epidemiological soundness of the proposed
model through qualitative assessments, including
stability analysis, positivity, uniqueness, and
boundedness. Sensitivity analysis, based on the
number (R,),

reproduction identifies  key

parameters influencing disease progression [7].
Using next-generation matrices, the
establishes the
equilibrium  stability and the implications of
exceeding the threshold for
[8-10].
simulations via the Homotopy Perturbation

Method highlight the
vaccination coverage in achieving herd immunity

study
conditions for disease-free
sustained

transmission Furthermore, numerical

significance of high

by [11]. This research emphasize the need for
integrated approaches combining vaccination
campaigns, improved treatment accessibility, and
responsible antibiotic usage [12]. By addressing
these critical factors, the study aims to guide
evidence-based interventions for mitigating the
burden of typhoid fever and strengthening
public health efforts in endemic regions [13, 14].
The critical role of vaccination, treatment
response, and antibiotic resistance management
in controlling  typhoid [15].  'The
mathematical model provides valuable insights

fever

into disease  dynamics, emphasizing the
importance of high vaccination coverage and
responsible antibiotic use. Sensitivity analysis
identifies key

parameters influencing

transmission, while numerical simulations
confirm the effectiveness of integrated control
strategies [16, 17]. These findings reinforce the
need for a comprehensive approach, combining
vaccination, improved treatment, and antibiotic
sustainable disease

stewardship, to achieve

control and prevent future outbreaks

I1. Materials and Methods

264

A. Model Formulation

We develop a deterministic mathematical model
on the transmission dynamics of Typhoid fever
based on the
individuals in the population. The population are

epidemiological ~status of
subdivided into different epidemiological classes:
Susceptible (S), Carrier (C), Infected (I),
Recovered (R) and bacteria (B)
Recruitment into the susceptible population is at

subclass.

the rate and also from recovered class by losing

temporary immunity with ® rate. The force
infection of the is * natural death rate occurs in
all the classes at a rate u, the disease induced

death for infected individuals is a rate d. The
parameters v, r, and d represents the vaccination
rate, antidrug resistance and saturated term
respectively. The mathematical model for the
system of non-linear differential equation is:

S =A+oR—-(u+A+v)S
C =pAS—(o,+0+u+¢)C

, 1-7)rl
| :(1—p)/18+6C—(0'2+,u+d)|—%
M
. @A=7)rl 3
R RV +¢C —(u+o)R+15

B =0,C+0,l —14,B

V.
Whereas A = K—lB the initial condition of

+
A>0

B. Existence and wuniqueness of model

solution

Feasible Region; we obtained the feasible
Region, in which the model solution is bounded.
First we considered the total human population
(N) in model solution where N =S+ C+ 1+ R
+ B.
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Adding the above system of equation (2), we
have

N
% =A+oR —(u+A+V)5+ pAS—(o, +8+u+PHC+

A=, Q=11

(1-pIAS+8C (o, +u+d)i - +¢C —(u+w)R+18

1+a  1+a
o C+o, 0 —u,B
dN
E=A—ys—,uc—,u|—d|—,LlR—O'1C—O'2|
@)
dN
EZA_/“[N_C“_GIC_GZI
At no outbreak of disease, C = 0 = 0, becomes
dN
— < A-uN
dt a
dN
—+ uN <A 3
g HH €)

Letp=u,and Q=A
By Method of integrating factor (L.F)
N-lF:j’lF-th

IF = elr

IE = oJe

N - ¢ je”‘.Adt

N - = Af e

N-ca =D pm 4 o
y7;

N(t)=£+€“tC
Y7

At t =0,

N©) =24 cC
Y7

Cc=N@O-2

265
N(t) < P+ (N(0) —ﬁ)-wﬂ
7 7

Lim N(t) < Lim{é+(N(O)—é)g-H‘} 0
too too | U u

Ny <D
7

Thus, the feasible
equation of the model enters and remains in the

solution of the system

region. This is a positive invariant set under the
flow described by (8) so that no solution path

leaves through any boundaryfﬁi. Hence, it is
sufficient to consider the dynamics of the model
in the domainR° . In this region, the model can

be considered has be mathematically and

epidemiologically well-posed. This shows that
the total population and the subpopulation
S(t),C(t), 1 (t),R(t),B(t) of the

bounded and is a unique solution. Hence, its

model are

applicability to studying physical systems is
feasible

C. Positivity and Boundedness of the Model
Solution

We let the initial condition of the model to be

nonnegative and now, we also proof that the

solution of the model is also positive.

Theorem, let

I'={s,C.I,R,B)eR®S, >0C, >0,1,>0,R, >0,B, >0}

Then the solution of {S,C]I, R,B} are positive
for t>=0.

Proof, from the system of differential equation,
we solve the equation one after the other.

First equation;

S =A+oR—(u+A+v)S=

S (t)>—(u+A+v)S(t) (5)

S +(u+A+v)S(t)>0
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Then solving using method of integrating factor
and applying condition,

We obtained

S(t)g(m—/lﬁ-v)t > jé(/ﬁ—ﬂw)t . Odt

S(t) Mt >04C

S (t)g(//+ﬂ.+v)t > C

S(t) > f—(y+l+v)t . C

When t=0,

S(0)>=C

S(t)>S, - ¢ “*M >0 (©)

Then by taking the second equation;

C =piS—(o,+0+u+¢)C=
C(t)>—(o,+0+u+g)C(t)
C+o,+0+u+¢)C(t)>0

Then solving using integrating factor and
applying condition, it gives

C(t) . €(01+z9+,u+¢)t > Ig(ol+9+y+¢)t . Odt

C(t) . K(aﬁ@ﬂ;ﬂzﬁ)t > A+ 0

When t=0,
C,2A

C(t) > CO . E(al+€+y+¢)t >0
Also, we took the third equation of (3.2) which

@-2)rl

' =@1-p)AS+6C — (o, + p+d)l —
d-p) (o +prd)l ==

We consider and this can expanded in

1+ 4
series form

A+) Tt =1-8 +5212=5°1% +511°
lI'=- (o, + u+d) 1 ()] -A—2)r(1—A)
|'=— (o, +pu+d)—(1-81 —rl —z51)
|'=—(o, + u+d)—[z5+ 5]l
I'=—[(c, + u+d)+50-0)It)]= @
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X
—2>—|(o, +u+d)+o(1-7)dt
IO AR
InI(t)2 —[0-2 +u+d)+o@l- r)t]+ C
I(t) > E—(0'2+y+d)+5(l—r)t > O,t >0
I(tZ |0£_(O-2+#+d)+5(1_r)t > O
Similarly, we took the fourth equation of which
1s
R — @-o)rl
1+

> —((u+w)R(t)

+dC —(u+w)R+18 =

R (t)
dt

%+(,u+a))R(t) >0

Then solving, using integrating factor and

applying conditions
(u+)t (u+w)t
R@R)- ¢“ " = [ - 0dt )

Rt)> g “"".Cc>0

Att=0

R(0)> ¢y “*".C>0

R, >C

RM) =R, ¢ >0

Finally we took the fifth equation of
B(t)=0,C+0,l —4,B = )

Bd—(tt) >— 1B

dB(t)
dt

Then solving using method of integrating factor

+1,B>0

and applying condition which gives
B(t) . g(/’b)t > J.lg(/lb)t . Odt

B(t)- " >0+C
At t=20

B(0)>C

B, >C
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B(t)>B, ¢ >0 (10)

This completes the proof of the theorem,
therefore, the solution of the model is positive
Hence the solution is bounded, therefore it is
well- posed and represent a physical problem.

D. Model Disease Free Equilibrium

To find the disease free equilibrium we equate
right hand side of the model to zero, evaluating
itat C =1 =R =B = 0 and solving for the non-
infected and non-carrier state variables.

A+oR—-(u+A+v)S=0
PAS — (0, + 0+ u+¢)C =0

@-o)rl _

A-p)AS+6C — (o, + u+d)I - 0

M+¢C—(,u+a))R+VS =0
1+61

c,C+o,l =, B=0

267

A—18—-AS-vS=0 (11)
A=S(u+v)=0
A=S(u+v)
_ A
(u+v)
E, =(S,C,1,R,B) =( A ,0,0,0,0)
(n+v)

E. Endemic Equilibrium Point

To obtain an endemic equilibrium E*, when I #

0

From above we obtainS*,C*,1°*,R*,B";
Let A =(u+A+v)

AZ :(O'1+9+/J+¢),

A, =(o, +u+d),
_@A-7)r
YT 144

Ay (04, — 0 A, + Ad; + A4,)

S =

— @A) VA; — @A VA, — 0ppid, — wppid, + Ay A A, — @A, A\ A + @A A, pA— A GpA
g PA(—0* A —@* A, + A4, + A4,

—@AVA; —@AVA, — 0ppid; + 0ppid, + A A A+ A A A, — A A4+ @A A, A+ @A A, pA— wA,GpA
Pe (=" + AN)A(=4, + 4,p - 6p)

— @A VA, — @A, VA, — 0@pid; —o@pid, + A, A A + Ay A A, + Ay A A, — @A, A, A+ A, A, pA

—AA VA, —AA VA, —Agpid, —Agpid, —AA, A A+ AA A, pi— AA G/ + A, A wA; + A, A 04,

— @A VA, — @A VA, — oppid; — o@pid, + Ay A 4d; + A A A, — @A A4+ @A A, pA— @A GpA
— 04,0 = G,0° Ay p + 0,070 — T, A, A+ G A4 p — 0, A6p + Gy pe* A; + 0 p0* A,

—0,pAA4; — o1 pAA,)

N (@A, A, pAl— @A VA, — wppid; — @ppid, + Ay A A; + Ay A A, — @A A A+ @A A, pi— A ,Gp) 1,

F. Derivation of Basic Reproduction
Number of R,

There are two diseases state but only one way to
create new infections. Hence, exposed and
model are

infected compartments of the
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involved in the calculation of R, from equation
(3.2)

Fi :[¥] Vi =

] J

ov; (Xo)] (12)

Fis the new infections, while the V,

i are

transfers of infections from one compartment to

anothet.

To calculate Rj, we have;

R =FV"'
C =piS—(o,+0+u+¢)C
|':(1—p);tswc—(az+/¢+d)|—M
1+0l
B =0,C+0,l —u,B
Where, A = Bv, Sy = A
K+B H+V
E- PAS, j
1-p)AS,
PBVA
E_ (v+ 1)K +B)
(L-p)By,A
(v+ 1)K +B)
0 0 _pvi
(v+ K
(v+ K
0 0 0
(0, +0+u+¢)C
(L-7)rl
V=(1-p)AS+&C —(0, +u+d)l -———
1+4

0,C+o,l —u,B
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(q+ot1e) 0 0
(=
y=—0 gHHD)—— 0
Hg i) "
—-q -G g
Now let
Ki=0,+0+u+¢),
K, = (o, + p+d) - L=00

1+0
K;=u,A=-0B=-0,,c=-0, (3.32)

[V| = K1K2K3

" K, 0 0
V1= [\C/| V=|A K, 0
B ¢ K,
KK, AK, Ac-BK,
V.=|0 KK, K
0 0 KK, |
KK, 0 0 ]
V=] AK, KK, 0
Ac-BK, K. KK, |
v VN_|
, KK, 0 0
:m AK3 K1K3 0 (14)
P A BK, K¢ KK,
K, 0 0
vio| AL
KK, K,
Ac - BK, c 1
K1K2K3 K2K3 KS
Where
R,=FV™*
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R =

EVt=10 0

0 0

00
|

_pwh g g
v+ kK |
(1-p)VA || 0
(v+ 1)K

0

K

(v+ 1K
ApvA N c(l-pmi
v+ KKK, (v+uKK

(| (Ae—BK)pvA | e(l- pmA
00 2 +
| KKK+ 1K

The most positive Eigen value is our R,
therefore

RO

_ ViA[(Ac - BK,)p+ K, (L - p)c]

K KK (v+ 1)K

(15)

Now putting (3.32) into (3.34), gives

A \'1[(80: +0y(0y + 1 +d) +

(1-7)r)
0

Vp+ (1, +6+ u+¢)1-p) -0,

KKK (v+ 0K

_ Ay[8(60, +0y(0y + u+d)+ (1= 0)r)p+ (1, +6 + 1+ P)1-p) - 0, ]

R, = Ay,

K K, K,(v+ K

(0o, +0,K,)p— Kl(l_P)O'z} (16)

K KK (V + 1)K

G. Local Stability of Disease-free

Equilibrium

The disease free equilibrium of the proposed

epidemic model is locally asymptotically stable if

R, <land unstable whenever R, >1

The local stability of the disease free equilibrium

at S,= (1 +V) as

y

A

A

—,o,o,o,oj
(u+v)

The Jacobian matrix of the system of (3.2) was

considered and differentiate each compartment
with respect to (S, C, I, R, B) and applying
Lassalle’s principle.

v+ 1K, KK

where [J. — 41| =0 as4; and |
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Are the Eigen

—values and identity matrix respectively. Where

i=1,2, 3, 4.
Therefore:
F(u+i+v) 0 0 o 0
A (o, +0+u+¢) 0 0 0
J, =l1-p)i 6 —(a:+/1+d)—(]_5r)r 0 0
v 1] (I—Tr); -(u+ ) 0
0 0, o, 0 = Iy
S A
At Equilibrium, I=C=R=B=0, ~° (1 +V)
Now equation (3.38) becomes
Fu+V)-4 0 0 @ 0
0 -(o,+0+u+d)-4 0 0 0
7 =b 0 - +utd)-P 1 o 0
v ¢ Er a4, 0
B
0 g 0, 0 = Hy = s
Je, -4l =0

Using Atangana Belame invariance principle by

lower triangular matrix,
We obtain

—(u+tw)-4,
0

[~ (u+ @)= 4, ][~ p, — 2] =0
=

-(0, +u+d)-

(1__‘;]'._,‘_; 0

(1-or
S

0

-(u+)-4, 0

=0 (18)

— My — As

M=—(pu+a@), As=—p, _ 0,
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Then from () we obtained

-2y —(u+d—7/

et —==-A)

(0, +u+d)-4=r

= Ay=—(o,+u+d

—(u+v)—4 0 0 @

0 -0y +0+u+¢)-4, 0 0

0 6 —(a:+/l+d)—(l'—;)"-/:3 0
1-7)r R

v @ _( 5) -(u+0)-4,

0 g, g, 0

From (19), we obtain

(o, +u+d)y+(1-oyr
—[-f]_

— (0, +6+ i+ 9) — Ay X %

Then this results to,

ooy + u+d)y+(1-0)r

(o) +8+u+9) -2, X (H 5

(loy+6+ u+9)-4,)- (o, +/1+d)(—ﬂ

> h=-lo,+0+u+9)

Also from (19), we obtained

h==(+y), 4=~0,+0+p+).4 =-[ S

hs ==y

]-75)%

-(u+w)-4, 0

0

3 )= Ao\ (u+@)-

o0, + i+ d)+(1-1)r

0
—H—A

=0

- —(u+ @)= AN, —2) =0

) d-7r )

<0 (19
0
0
of =0
0
—Hy =25
0 0
(u+w)—7, 0
0 -y — A

-ty = A

AX y=1)=0

Ly =+ 0),

=0

(20)

Since all the eigen values are all negative, hence

the
asymptotically stable.

disease  free

equilibrium

is

H. Local stability for endemic

Theorenr: The Endemic Equilibrium of the
proposed epidemic model is locally
Print ISSN 2714-2469: E- ISSN 2782-8425 UNIOSUN Journal of Engineering and Environmental Sciences (UIEES)
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asymptotically stable if Ry <1land unstable

otherwise

Proof:

We linearized each of the compartment in

Let
S=x+S",C=y+C’

S =A+w@+R)-(u+i)x+S")

d=z+1",

R=a+R",B=b+B"

C =pi(x+S)—(0,+6+u+d)=+1")

I'=Q-

(- +17)
T 1+8(z+1)

PA(x+S)+0(y+C") (0, + u+d) -

A-p(+1D)
1+8(z+17)

+d(v+C)-(u+w)¥a+R)+v(x+S")

Then we substitute to the above equation (20)

& =A+wa—(u+A+v)x
dt

% =plx—(o+ 6+ u+g):
t

d=

—=(-p)x+ & (0, +u+d)z—(1- D= (&)™

% =(1-Dr=(&) 7 + v — (u+ @)a+vx

E:crlg.'+cr]:—,ubb

21)

Then we differentiate each compartment one by

one and take the Jacobian- matrix

-(u+i+v) 0 0 4] 0
A 0 -(0,+0+u+9) 0 0
J; =|1-p) 6 {(0 +;1+d)+%} 0 0
v ¢ M -(u+ ) 0
)
0 0, 0, 0 =ty
e, —Al|=0




~(u+i+v)=4, 0 0 [} 0
P/ 0-4, -0, +0+u+9 0 0
Js, =l1-p2 6 {(a e ’)] A0 0 [=0
v P L -(u+w) -2, 0
)
0 g, 0, 0 -ly=A,

LetA=—(u+A+v), B1=0,C=" (o, +/1+d)+

) D="W+0) g_ 4

From we obtain

(A=2.)B, -2 XC =)D -2 )E~2)=0

(4B, - A A= B+ NCD-A.C-AiD+i XE-2)=0

(AB,CD- A ABC -} ABD+ 4 AB,— A ACD+ 2} AC+A AD -4} A-4B,CD
+A'BC+2'BD-7 B+ CD-A D+ YE-2)=0

(AB,CDE -/, AB,CE -, AB,DE + /. AB.E — /_ACDE + .’ ACE + ., ADE - 1. AE

- /.B.CDE +} BCE+. BDE -} BE+ ) CDE-} CE-} DE+'E-} ABCD
+2ABC+ 7 ABD~7}AB,+ 3 ACD -2’ AD+}'4A+/ BCD-1’B,.C-2’BD+/ B,
-22CD+3'A+2 BCD-4}BC-2 B D+ B -2 CD+A}'C+4'D-27 =0

-2 +2 (A+B,+C+D+E)- 2 (AE+B,E+CE +DE+ AD +B,D +CD+B,C + AB,)
+2.}(AB,E + ACE + ADE + B.CE + B,DE +CDE + AB,C + AB,D + ACD + B,CD)
- 2.(AB,CE + AB,DE + ACDE + B,CDE + AB,CE) + AB,CDE =0

-/:f-/:.‘{-o:-/:-r>-0-[(a;-u-d)-“'—_”"]-(u-a)-m

{(/1 A+V)x=tty +0+[(ay + u+ d—————]x/lb (u+0)x
a1 (p2 )20 )+ D) 05 s 1)
-lloy+ p+d)+ ]X “p))+ [+ 2+ V)x=(u+@)x=pi3) +0+0+[(0 + p+d)
L=

T’]x-w)x-ﬂ,—0-0-(-<;:-/:—v)x—[ sued)d )1 i+ 0)+0}-1

00+ ~(u+72+v)+0=(u+2+v)x(o, -/l—d)—(l-‘;)r]x-(/1—0)x-;l,}—0=0

The characteristics polynomial | is given by
A0 +alt+a,4’ +a, 4  +a,lt +ag
Comparing equation (3) with equation

a, =1
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(-7

a, =={(u+i+v)+[(0, +/1+({)+T]+(/1+ O)+ 11}

(1-7)r

=={(u+ i+, +((o, +1 +d)+T]/1,)+((;1 +O) ) +(U+ A+VY U+ 0)

)

+(o, + /1+d) —u+w)}

=={(u+i+v)((0, + u+d) +(l_—‘;)r])/1b) -

[+ 2+ u+o)u)+((0, +/1+d)+( 5)
(- )

10+ @)(uy) +

(u+i+V)[(oy+ u+ad)+

Nu+w)}

a, =={(u+i+v)+(u+i+W[(o, +/1+d)+%])(/1+(o)(/15)}

a; =0

Using the Routh-Hurwitz criterion, it can be
that all the the
characteristics equation above have negative real
part.

seen eigen values of

Then the
asymptotically stable.

endemic equilibrium is locally

I. Global Stability At Disease Free
Equilibrium

To investigate the global stability, consider the

Lyapunov function. Then From equation we

analyse

C =pAS — (o, +0+ u+¢)C,
|'=(1-p)AS +6C — (o, + u+d)l _d=or
1+4

B =0,C+0,l —1,B

LetC=1,1=1,B=1,

Consider V (S, C, I, R, B, t =

C, 1, +C,1, +C,l,.

dv,
dt

=C,l, +C,1, +C,l,
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Assume that €, < €, <€y 2C,>C, >C, =2 C, 20 Which gives
S[C,6+Ci0,-Cilo 46+ u+ Iy -Cy(0y + i+ D), |
-0+ 0y +CypiS, +Cy0- S, |

s A (= 1 :C‘=(0i+8+ﬂ+¢)(l+®r(l-r):a=0 o)
Tt (o, +8+u+g) (0, +pi+d) ’

Then put (3) into (3), we obtain

¢ Blo,+6+p+o)1+0p(-1) (0,40+u+9),
(ot urd)u+) (O, +6+u+9) |

(oy+pu+d)1+0p(1- r) (1-1) (1 r)f(1+o’) Av 01+9+ﬂ+¢)(l+5)"(1'f)1
(@ % p+d)u+y) (,{1+1) ( r)p(1+é) (u+v) (0, +p+d) :

-8(61+9+;1+¢)(1+J)r(1—r)_1H(61+€+;1+¢)(1+5)r(1—r)_ Av I]}
L (g tu+d uty) (0,+1+d) ") 1J

=<

<IfR,-10,

By LaSalle’s  principle, at  equilibrium,

vV,A A
= , as t—0, as S =
(u+v) (u+v)

global stability of the disease free equilibrium at
as t—0 it is stand that whenever R, <1, is

Globally Asymptotically stable.

J. Global Stability for Endemic
Equilibrium

Theorem: The model is said to have no periodic

otbit

Proof: Employing the Dulac’s criterion as

adopted in 2021 by Ahmad et al.
Define M =
Dulac’s function as; G= 1/SC

Let GM be computed as follows;

GS' =%[A+a)R—(y+/l+v)S]

GC' =%[p/15—(01+0+,u+¢)C]

A L-7)nl
Gl -SC[(l P)AS +&C - (0'2+,u+d+71+é] }
(24)

@-o)rl

1
GR = — | EZON | e (u+w)R+VS
SC{1+61 ge —(u+o) }

S, C, I, R, B). Be defined as the
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1
GB =§[alc +0,| —u,B]
Then %(GM) is obtained as follow;

d N e, 8 fod R\
E(GW)——[ _)J+_ G( J G(a’r)f G(

a| B IG(

s

_{(GM)L@_(_-‘\_+50_&_(/1+/1+v)1+_6_;_/741_(01+9+/1+¢)1+
dt slsc’sc ¢ Jaclc s |
é ,f(l-p);.+¢9_(<,-:+;1+d+(1-r)r)11+ é

gl & % SCA+d) | er|SC(+d) S  SC

cfal o] uB)

2|3 5¢ sc)

Now, we consider the parameter with and
without state variables i.e those without are
negative invariant as those with states variables

are neglected not relevance to SC.

P 01+9+/1+¢)1 (1-p)i 91+

(mls ¢ Jlc x !Isc ¢l
f (u+0)+1 LJ_ﬁ_ﬂL
| "¢ ['|sc ¢l

i+(/1+/‘.+v+p_}.+(al+9+,u+¢)+(l—p)/‘.+ﬁ+(u+(u)+
Ne (o4 Cc Ne sC (o4 c

v My

._+__ Uz

c sC C

__{ A +[(/1+/'.+r)+p/'.+(al +9+;1+¢0)+/‘.—p/‘.+€+;1+ro+a:+/1,]
sC sC

" \\ ()/1+/+\+"'8+al+0+o+a + 1) 20
LSC‘ sC

It implies that the system has no closed orbits.
Epidemically the non-existence of periodic
orbits implies that there are fluctuations in the
number of infective which makes it difficult to
allocate resources for the control of the disease.

K. Sensitivity Analysis of R,

We are to test for the sensitivity of R, by
differentiating R, with respect to all the
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parameters in R;. The normalized forward B { TS, (- ;),-)p k(- p)}

S . ~ 8R0 P % ” . dK,KK(v+ 1)K
sensitivity index is defined as ¢, = a_p X R—Oas éd (Kx(/l+0:)+(1 _‘;)’ K, v+ f)K Avy(6o, +0,Ky)p-K,(1-p)a,
[ -0 }
0+0,(u+0, )+ ———-K,(1-p)dK,
R — [AV1(90'2+O'1K2)p—K1(1—,0)62] | i) ) {d=p)yk,
0o~ - s
K, K K (u+Vv)K w0+ =260, +0k)p-K - 0o,
Where K|=(0'1+6+/1+¢)“K,=(c72+/1+d)+u—r)r K, =u, _a_R;O___._‘zR_oxf_’_
' ' dp o R,
&R, R, A .
SEeee R _Mi[(60,+0Ky) +Kio| KKKk
‘ 9 R = op KKK, (u+vK Av, (60, +0,K,)p-K,\(1-p)o,
ﬂ=yl[9‘7:+°'xK:)P £ d P)‘T:]x AK KK (u+9)K il 26) 60, +0.K,)+ K.03]
A KKK, (u+VK Ay, (60, +0,K,)p-K,(1- p)o, = 2V 07y)* M0, 1P
R (60,+0,K,)p-K (1- p)o,
0 0 1
Eﬁ?lxk_o s Pl
&, _Aboy+ok)p-K(-por]  KEKK@eK o
e KKK (u+)K Av(60,+0 K )p-K,(1-p)o,
R, R, 6 {[(1902 +0,(0y + f+d) +(1;5r))]p- K -p)a:]rKl
ol A ) 0+ 860, + 0,k )p- K1 (27)
R, =A"l[(o'z"’o'sz)P‘(o'x+/‘+¢)(1‘P)0':]X KKK (K = ot HTI( vroklpmhi=pe
a6 KKK (0, +u+@)u+vK Ay (60, +0\K,)p- K, (1-p)o, Ry, Ry T
[a,+01K,)p-(al+/1+¢)(l-p)02] &K, ¥ & K
. X &R, _Aylbo, +0,K)p-K (- p)o,) VKKK (u+VK
(al+/l+¢) (902 +01K2)p_Kl(l_p)02 W_ KIK,KNHK xAvl(So‘,+o‘lK,)p—K1(l—p)O',
Ry _ [(0, + 0K )p - (0, + 1+ 0)1 - p)o, JEK, 330 o 2 1 tok, )
86 (0.+u+0X60.+0.K.)0-K.(1-0)a, ‘ T
R, R, K
& K R,
%:% it ﬂ;\‘ila"f:+°'1K:)p'K|(l’ﬂ)"z]x KK KK (K
éo, 0o, R, & KKK (1+9) Ay (8o, +0,K))p -Ky(1- p)o,
R, _Avl[(@o:+K:)p—(9+/1+¢)(1—p)o,]x oK KK (u+v)K =K
o, @+urpkKuK Mo, +0k)p-K(-p)e, %Zi; L
0

[(60,+ K))p-(6+ u+0)1- )y JoiK, (1=
= (G d -k, (- p)o,

(6+ 1+ )60, + 0K )p-K 1-p)o, &, _ ”[[( A Tl )"'L WK (K
& &, o, au Ko+ Dok M(Bo, + 6.K)p- K 1= 9)oy
%, "%, 7,

(-0 [ -1y } ,
Avi[(8+0,(u+d)+ -K(1- (60, +0,(0, +d) +——=)p - K(1- )0, (1K, (t+v)
&, i 1{[( l(/ ) 5 lp-Ki(1-p) ) 0K KK (v+ K _ 1 - B 1 "
T -1y _K (-  +d)+——L (60, +6,K)p- Ky(1- p)o
éo, K(u+d) . ;)' K,(v+ i)k Av(Bo, +0.K,)p-K,(1-p)a, [0, +d) +—=Kbo, +0iK)p- K1~ oy
R, R, &
(-7)r) @ @ R,
f+a0,(u+d)+——=]p-K,(1-p);0,K, 0
_{[( {+d) § b-k(-nok, & _ Ml +0,0; + )+ 0-Dp-K1-poy] KKK @k
- -0 o a K[(0, + u+d)+(-1)]K,(u+)K Ay (60, +0,K,)p-K,(1- p)0,

R @000, 1400+ 0- 0o~ K 0~
aRo aRO d [(o, +u+d)+(1-1))60, +0,K,)p-K (- p)0,

EREY 2l
; B

ou, ou, R,
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ol ) KK (u+V)K

= fly

1K KK (u+v)K

X

L. Numerical Solution of the Model
with Homotopy Perturbation Method

Since we intend to numerically simulate the
mathematical model, we intend to provide an

approximate solution using the Homotopy

perturbation method since there is no associated
exact solution to the model. The analysis of the
HPM will be given.

Ala) =k(7), 75 A, (29)
Subject to the boundary condition

Qla,a,)=07>IL (30)

Operator < represents  the  differential

operator, 2 denotes the boundary operator,

k(7)is an analytic function, ¥ is defined domain

bounded by II, and ¢, is a normal

vector derivative drawn externally from V.
Thus we can separate the operator A()

into two:

< (a) =L; (@) + N; (), (31)

The operator L (a),N;(ax) denote the linear

and nonlinear term respectively such

that equation (34) implies:

L; (@) + N; (a)=k(z), 75 A

We can construct a Homotopy for (34) so that
H(f.p)=(1=pIL(f) = Lp(@,)]+ p[A(f) = k(r)] =0

Where p is an embedding parameter which can

undergo a deformation process of
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Av(6o, +0,K,)p-K/(1-p)o, ®) changing from [0,1]

Equation (41) is further simplified to obtain:

H(f.p)=Lr (N~ Lp(a)+ AL (@)1 + PN (o)1 + PNF () - k()] =0
As p =0, equation (32) vields:

H({ 0) =L ()= Lr(a,) =0

And when p =1,

H(f1) = A(f)—-k(r)=0.
We can naturally assume the solution (44) as a

power series such that

f(t)=f,(t)+ pf )+ p> () +......... p" f. (t)
(33)

Evaluating (44) with (45), and comparing

coefficients of equal powers of p,

The values of f (t), f, (t), f,(t) are obtained by

solving ordinary differential equations.
Thus, the approximate solution of (33) is:

F@) =lm £, = @)+ LO + L0+
(34)

i.  Saturation analysis and convergence

Here, to implement the application of the
Homotopy perturbation method in solving the
proposed model while taking care of the
unlike
existing, we conduct an analysis of the saturation

inhibitory  parameter, several other

and further examine its convergence for usage.

Hence, consider , This can be expanded in

series form such that

(32)

A+A) T =1-A +5%1°=5°1°+ 5411 =5°1° +0(1°)

(39)
Based on the convergence of this series it is
obtained that,
1

|é]| <1, that is |5| <
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the
mathematical model, we create the following

To conduct numerical simulation on

correctional scheme for the model equation

ds
1-p)— ——A-oR+(u+A1+V)S
( IO) dt (dt (u ) j
1-H S48 - PIS (0 10 +u+0C <0
d “\dt
-0 L+ L-a-pis-ac+oy+ e a1+ & r)’ll 0 (6)
dat “\dt 1+
dk (dR (1-1nl
1-p)—+p| = +@)R 18| =0
LR i T ‘}
(-D2 4 2 -C-011+ 1B =0
dat "\ dt J
Simplifying the equation (39) yields:
?j—?z P(A + @R — (i + A +V)S)
58— p(p25 (0, + 0+ i+ 9)C)
da | . (-1l
—=p, (1-p)AS +6C-(0y + u+d)l - 37
|- P +eC-(oreus -0 6D
dR (-1
—=p| - +®)R +V§
7 A Tra ¢C-(uta) \}
= ploC+0,1-u,B)
dt
The approximate solution of (37) can be assumed as:
S(’)=50(’)‘*’1’51(’)*’}7:5:(’)+P353(f)+--~~P"5n(’)
C(O) =)+ pe, () + pPey () + PPy () +....0"¢, (¢)
I() =iy(0) + piy () + p*iy (0 + P15 () +..."1,(2) (39)

RO =r,0)+ @)+ () + P 1 (0) +...0™r, (1)

B() = by(t) + pby(1) + p°by () + P°by(1) +...0"D,(2)

275

Evaluating (53) wusing (54) and comparing

coefficient of p"
0

p’:

So(t)=0, cCo(t)=0, io(t)=0, ro(t)=0, bo(t)=0

Solving (54) yields
So(t) =g, Co(t) =Cq, Ty (t) =1y, Iy (t) =Ty, by (t) =Dy

Similarly comparing the coefficients of p'

% =(A+or, —(u+A+V)s,)
dc
d_tl_( A8, — (o, +9+ﬂ+¢)cl)
di, . A=)
—L = 1-p)As,+ &, — (o, + u+d)i, ———+
at 1-p)1s,  — (0 + u+d)i 1+5'1j
(39)
dr, @-7)ri,
L= "L de, —(u+o)r, +Vs
dt 1+ di, e, — (u )14 1
d
d_kil (Glc +0,l, - :ubb)
Solving the system (39) yields:
At pl, the first iterations are obtained as
S, (t) = (—A4sy, — 18, + @y — Vs, + A)t
¢, (t) = (A8, — ey — g, — &y — 6y —Cooy )t

by() = (=byt, +¢,0, +i,0)t

At p’, the second iteration are obtained as
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[ &2 o | o3 5 ) | " 2l " .
[°@rny -dariy -0arny +0aiy +art,=A's, =244, +Aor, 4000001
TS TV T TN TR, N S
5,(0) 2r| f"% [+ 2ty = 21V, + 01y = Ofcy, = iy +OVy = Vs, -
|-Vt A+ A+ Ay §
) . " " " 5 A " i!mx»»
(=4 5y = 2Apipsy + Aopry = Adps, = ApG, = Apvs, = Aps,0, + Aip <
()= Ez', +0°cy + 24, + 216y + 2 fic,0y +°cy + 208, + 26,0, +67¢, + g 20003
| h -
|\2&°0'1 +4‘00'1‘ 2000004
(=36, +5°5%, - 66", conco]
1 :f/?./'./lsoﬂl.lrso-21‘d°¢5p/;°+31'ﬁ02p).so 2| +3,-3i,:5_,-3r1j°+2,~3n-°+ dis, 0 10 % 30
===t . i o +: v time { months)
2 \+4rtyd+4rn ' p+ 4ty S0y | 3| -2dps, - 2dbi, - dbe, - 20, - 2o, [ V= 0.001 = 0,003 = v~ 0,005 === v~ 0.007 ]
\=+Ars, + 1, -2riy0, )
Fig 1: Analysis of Vaccination Uptake on
b 4 _ —_ YT Susceptible Population
e 1{4 (=418, = Dpvs, - e, = i, = 08, = i Gpls, + 31y 0 pls, = ey
U1\ G o, #3004, 0 4 3 0y 300 sy 38 By - I o~
(a2 250k 200508 80 2uded 4n )it
1=3r'r5 8" +6r'm, 0 4578 10,6 \
- . " " iuu(w
L300 102030 adeded (2040 ) <
Ol-6r'rh, 0" 4100, 70° - 0% - vis, +Av-rty s
b(r)-lr’(zlb = 16,0, 10, 1105, G, 185, 0, =11, 00, +1, 00, ~ s 0, 410 ey
)= 5E Uy %= Hota0y = Hjyy =110l 0y =10'ly Oy =1y 00y Ty 00y = A8 0y 7100y ooe
dnoo': '(1100': +/J00: ‘/000'2 "700: +&00: '100: +/.ﬂ$°(71 '/k‘ool '@I'QO'I '&001 '(001 ’ ‘ ‘:.-., { -an\v)" . o
[ 0,07 — 0,08 w— 0,09 = v 0.1 ]
Fig 2: Dynamical Response of Vaccination
III1. Results and Discussion Uptake on Recovered Population

From the simulation of iterative values of the
model solution via homotopy perturbation

method these are computed graphically with the T e
help Maple-18 software as for respective o]
compartments The results of Fig. 2 to Fig.6 5
represents the effects of the key parameters on %""""”
the compartments of the model solution. Hence $
these are graphically illustrated below: o
N
s os time { months) i 13
[ 0.1 0.3 0.5 0.7 |

Fig 3: Dynamical Response of Infected Patients’
Therapeutic Actions at 0.5 Rate of
Drug Resistance
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Fig 4: Dynamical Response of Recovered
Patients’ Therapeutic Actions at 0.5 Rate
of Drug Resistance

£
3 170001

laz.
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£ 160004

ectedF
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140004

1 30004

120001
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[—v 0.] s () ) s pe()§ s— 0.7
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0.5 l 15

3 0.0000] == 5000003 =g 0,000005 == 5. 00000007

Fig 5: Dynamical Response of Infected
Population to the Therapeutic at 0.5

Drug Resistant Rate
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e 100004

S000+4

Recovered Popalas

0 0l 02 03 04
time { months

w— 5 0.0000] "= 5.0,00003 == 5. 000008 === §- 000007

Fig 6: Dynamical response of recovered

population to the therapeutic at 0.5 drug

A. Interpretation of the Graphs

Here, we discuss the outcomes of the study and
the conducted numerical experiments. To begin,
Table 4.11 Based on the results, we observed

these parameters ¢,0,,0, and p have a positive
sensitivity indices on R, as a consequence,
increment in these values will raise R, and
lowering these vales will decrease R,. Thus,
strategic ways applicable to lowering the rate of
the parameters, specifically hose with higher
index such as ¢ should be put in place.
Furthermore, the index indicates that the
discharge rate of bacteria from carriers and
infections should be closely monitored to
minimize the rate at which the environment get
contaminated so as to avoid increase
susceptibility of vulnerable population. Lastly,
increasing the screening rate will lower the

growth of R, and consequently reduce disease

transmission.
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Fig. 1
population such that as v increases from 0.0001

shows the dynamics of susceptible

to 0.0007, the susceptible population increases.
The implication of this is that increase in
vaccination will increase the population of the
susceptible. We conclude that the number of
individuals who have been with typhoid fever
disease before the application of vaccine has
gone down due to impact of vaccine on infected
individuals.

Fig. 2 reveals the simulated results the model
variables at 50% using antibiotic resistance on
Transmission dynamics of Typhoid fever, and as
v increases from 0.07 to 0.1. it clearly show that
recovered population has increased to maximum
level . Therefore we conclude that applying
vaccine in eradicating typhoid fever disease from
the community is effective in a specified period

of time.

Fig. 3
population drastically reduces to bare minimum

clearly shows that the infectious

as therapy  implementation  increases.
Consequently this affirm that this strategy is
effective in eradicating the disease from the

community as time progresses.

Fig. 4 reveals that despite the level of antibiotic
drug resistance of infected individuals a great
response is observed concerning the efficacy of
treatment as infected population drastically
reduces and Recovered individuals grows to

maximum level.

Fig. 5 It clearly shows that the infected
population has reduced to bare minimum at the

end of the
treatment response. Therefore we conclude that

implementation of saturated

this strategy will eradicate typhoid fever disease
from the community as time progresses.

Fig. 6
population has reduced to bare minimum as

clearly shows that the recovered

278

saturated treatment response increases from
0.00001 to 0.00007, which indicate that saturated
treatment response has reach it saturation point
and at that point it can aid complication in

treatment.

IV. Conclusion

This
mathematical model for understanding typhoid

research presents a comprehensive

fever  transmission, considering  treatment
response, vaccination and antibiotic resistance.
Through qualitative analysis, we establish the
model’s epidemiological reliability,
demonstrating stability conditions for disease
control.  Sensitivity analysis identifies key
parameters influencing disease spread, while
numerical simulations underscore the role of
high vaccination coverage in achieving herd
immunity. The results highlight the necessity of
integrated strategies, combining vaccination,
effective treatment and responsible antibiotic
use, to curb typhoid fever. Ultimately, this
research  emphasizes the importance of
addressing treatment saturation, vaccine efficacy
and antibiotic resistance for sustainable disease

management.

We recommend a multifaceted approach to
typhoid fever control, emphasizing widespread
vaccination, optimized treatment strategies and
Health
prioritize

antibiotic  use.
should

accessibility also must ensure effective treatment

responsible care

practitioners vaccine
and monitor antibiotic resistance. Public health
initiatives should focus on awareness campaigns
to promote hygiene and vaccination. Further
research should refine mathematical models to
enhance disease prediction and intervention
effectiveness.
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