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​1.​ ​INTRODUCTION​

​As​​autonomous​​robots​​increasingly​​find​​applications​​in​​industries​​such​​as​​logistics,​​surveillance,​​healthcare,​
​and​ ​transportation,​ ​the​ ​demand​ ​for​ ​efficient,​ ​adaptive​ ​path-planning​ ​algorithms​ ​becomes​ ​more​ ​critical.​
​Traditional​​methods,​​such​​as​​rule-based​​systems​​and​​heuristic​​approaches​​like​​A*​​and​​Dijkstra’s​​algorithm,​
​rely​ ​on​ ​predefined​ ​maps​ ​and​ ​deterministic​ ​rules​ ​(​​Sutton​ ​and​​Barto,​​2018).​​While​​these​​methods​​guarantee​
​optimal​ ​paths​ ​in​ ​static​ ​environments,​ ​they​ ​struggle​ ​to​ ​perform​ ​in​ ​dynamic​ ​and​ ​uncertain​ ​settings​ ​where​
​obstacles​ ​and​ ​goals​ ​can​ ​change​ ​unpredictably.​​Reinforcement​​learning​​(RL)​​offers​​a​​promising​​alternative,​
​enabling​ ​robots​ ​to​ ​learn​ ​optimal​ ​navigation​ ​strategies​ ​through​ ​interaction​ ​with​ ​their​ ​environment.​ ​Unlike​
​traditional​​methods​​that​​depend​​on​​precomputed​​paths,​​RL-based​​algorithms​​adapt​​by​​continuously​​refining​
​their​ ​decision-making​ ​policies​ ​based​​on​​experience.​​This​​adaptive​​approach​​proves​​especially​​beneficial​​in​
​environments​ ​characterized​ ​by​ ​uncertainty,​ ​unexpected​ ​obstacles,​ ​and​ ​real-time​ ​decision-making​ ​needs.​
​Among​​various​​RL​​techniques,​​Q-learning​​and​​Deep​​Q-Networks​​(DQN)​​have​​been​​widely​​explored​​due​​to​
​their ability to handle discrete and continuous state spaces, respectively (​​Sutton​​and Barto, 2018).​

​This​ ​study​ ​investigates​​the​​implementation​​of​​RL-based​​path-planning​​algorithms​​in​​MATLAB,​​comparing​
​their​ ​performance​ ​against​ ​conventional​ ​methods.​ ​By​ ​evaluating​ ​efficiency,​​adaptability,​​and​​computational​
​complexity,​​the​​research​​aims​​to​​provide​​insights​​into​​the​​practical​​viability​​of​​RL​​for​​autonomous​​navigation​
​in​ ​real-world​ ​scenarios.​ ​Traditional​ ​path-planning​ ​algorithms,​ ​such​ ​as​ ​A*​ ​and​ ​Dijkstra’s,​ ​are​ ​effective​ ​in​
​structured,​ ​static​ ​environments​ ​where​ ​obstacles​ ​and​ ​paths​ ​remain​ ​unchanged.​ ​These​ ​methods​ ​compute​
​optimal​​paths​​based​​on​​predefined​​maps​​and​​deterministic​​rules,​​ensuring​​reliable​​navigation​​in​​well-defined​
​settings.​​However,​​in​​dynamic​​or​​unpredictable​​environments​​where​​obstacles​​may​​appear,​​move,​​or​​change,​
​these​ ​algorithms​ ​struggle​ ​to​ ​adapt,​ ​necessitating​ ​real-time​ ​decision-making​ ​(Wang​ ​et​ ​al.,2020).​
​Reinforcement​​learning​​(RL)-based​​approaches​​offer​​a​​robust​​solution​​by​​enabling​​robots​​to​​learn​​navigation​
​strategies​ ​through​ ​continuous​ ​interaction​ ​with​ ​their​ ​environment​ ​(​​Sutton​ ​and​ ​Barto,​ ​2018).​ ​Unlike​
​conventional​ ​algorithms,​ ​RL​ ​methods​ ​do​ ​not​ ​require​ ​prior​ ​knowledge​ ​of​ ​the​ ​environment,​ ​making​ ​them​
​particularly​​suitable​​for​​real-world​​applications.​​Despite​​their​​potential,​​several​​challenges​​must​​be​​addressed​
​to make RL-based path planning both practical and efficient in dynamic environments (Zhu et al., 2017).​
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​One​​key​​challenge​​is​​the​​convergence​​speed​​of​​RL​​algorithms.​​Many​​RL​​techniques,​​such​​as​​Q-learning​​and​
​DQN,​ ​require​ ​substantial​ ​training​ ​time​ ​to​ ​learn​ ​an​ ​optimal​ ​policy,​ ​which​ ​may​ ​be​ ​impractical​ ​in​ ​real-time​
​settings(Mnih​​et​​al.,​​2015).​​Another​​issue​​is​​learning​​efficiency:​​the​​effectiveness​​of​​RL​​depends​​heavily​​on​
​the​ ​exploration-exploitation​ ​balance​ ​and​ ​the​ ​design​ ​of​ ​appropriate​ ​reward​ ​functions​ ​that​ ​guide​ ​the​ ​agent​
​toward​​optimal​​paths.​​Finally,​​the​​computational​​cost​​of​​RL​​methods,​​particularly​​deep​​RL​​approaches​​like​
​Deep​ ​Q-Networks​ ​(DQN),​ ​is​ ​a​ ​significant​ ​concern​ ​due​ ​to​ ​the​ ​high-dimensional​ ​state​​spaces​​they​​involve,​
​which​ ​demand​ ​considerable​ ​computational​ ​resources​ ​for​ ​both​ ​training​ ​and​​real-time​​execution​​(Lillicap​​et​
​al.,2021).​ ​Addressing​ ​these​ ​challenges​ ​is​​crucial​​for​​realizing​​the​​potential​​of​​RL-based​​path​​planning​​as​​a​
​viable​ ​alternative​ ​to​ ​traditional​ ​methods.​ ​This​ ​research​ ​explores​ ​the​ ​implementation​ ​of​ ​RL​ ​techniques​ ​in​
​MATLAB,​ ​assessing​ ​their​ ​efficiency,​ ​adaptability,​ ​and​ ​suitability​ ​for​ ​real-world​ ​autonomous​ ​navigation​
​applications.​

​This​​study​​makes​​a​​significant​​contribution​​to​​the​​evolving​​field​​of​​autonomous​​mobile​​robotics​​by​​exploring​
​the​​application​​of​​Reinforcement​​Learning​​(RL)​​algorithms—specifically​​Q-​​Learning​​and​​Deep​​Q-Networks​
​(DQN)—to​ ​the​ ​path-planning​ ​problem.​ ​While​ ​traditional​ ​algorithms​ ​such​ ​as​ ​A*​ ​and​ ​Dijkstra’s​ ​remain​
​reliable​ ​in​ ​structured​ ​environments,​ ​they​ ​often​ ​lack​ ​the​ ​adaptability​ ​required​ ​for​ ​real-world,​ ​dynamic​
​conditions​ ​(Bahare​ ​et​ ​al.,​ ​2017).​ ​By​ ​demonstrating​ ​the​ ​implementation​ ​and​ ​effectiveness​ ​of​ ​RL-based​
​strategies​ ​in​ ​a​ ​MATLAB-simulated​ ​environment,​ ​this​ ​research​​bridges​​the​​gap​​between​​theoretical​​models​
​and​ ​practical​ ​deployment.​ ​The​ ​significance​ ​of​ ​this​ ​work​ ​lies​ ​in​ ​its​ ​ability​ ​to​ ​inform​ ​the​ ​development​ ​of​
​intelligent​ ​navigation​ ​systems​ ​capable​ ​of​​autonomously​​adapting​​to​​environmental​​changes​​without​​human​
​intervention​​(Arulkuraman​​et​​al.,​​2017).​​Insights​​gained​​from​​the​​comparative​​analysis​​of​​RL-based​​methods​
​and​​traditional​​algorithms​​provide​​a​​foundation​​for​​designing​​more​​resilient​​and​​responsive​​robotic​​systems​
​across​ ​various​ ​industries,​ ​including​ ​logistics,​ ​surveillance,​ ​healthcare,​ ​disaster​ ​response,​ ​and​ ​smart​
​manufacturing (Zhang et al.,2021).​

​Moreover,​ ​the​ ​research​ ​contributes​ ​to​​academic​​literature​​by​​offering​​a​​reproducible​​simulation​​framework​
​and​ ​detailed​ ​performance​ ​analysis,​ ​serving​ ​as​ ​a​ ​reference​ ​for​ ​further​ ​studies​ ​in​ ​robot​ ​learning,​ ​control​
​systems,​ ​and​ ​artificial​ ​intelligence​ ​applications.​​It​​highlights​​both​​the​​potential​​and​​the​​challenges​​of​​using​
​machine​ ​learning​ ​techniques​ ​in​ ​robotics,​ ​encouraging​ ​ongoing​ ​innovation​ ​in​ ​adaptive​ ​path​ ​planning​ ​and​
​autonomous​ ​decision-making​ ​(Bahare​ ​et​ ​al.,​ ​2017).​ ​Q-learning​ ​and​ ​Deep​ ​Q-Networks​ ​(DQN)​ ​are​ ​both​
​model-free​ ​reinforcement​ ​learning​ ​algorithms​ ​that​ ​aim​ ​to​ ​learn​ ​optimal​ ​policies​ ​by​ ​interacting​ ​with​ ​the​
​environment​ ​(Open​ ​ai,2018).​ ​However,​ ​they​ ​differ​ ​significantly​ ​in​ ​terms​ ​of​ ​architecture,​ ​scalability,​ ​and​
​suitability for complex robotic path planning tasks. : A summary of theoretical review is shown in Table 1.​

​Table 1: Summary of Theoretical Review​

​Criteria​ ​Q-Learning​ ​Deep Q-Network (DQN)​

​State Representation​ ​Discrete states, often limited to small​
​environments​

​Supports large and continuous state spaces using​
​deep neural networks​

​Q-Function​ ​Stored as a Q-table​ ​Approximated using a neural network​

​Scalability​ ​Poor scalability to High dimensional​
​environments​

​Highly scalable with deep learning​

​Learning Efficiency​ ​Fast for simple​ ​tasks, becomes infeasible​
​as state space grows​

​More efficient for complex environments but​
​requires longer training​

​Memory Requirements​ ​Minimal​ ​Higher, due​ ​to neural networks and experience​
​replay buffer​

​Training Stability​ ​Generally stable in small environments​ ​Prone​​to​​instability​​without​​techniques​​like​​target​
​networks and experience replay​

​Adaptability to Dynamic​
​Environments​

​Limited, requires retraining​
​for new environments​

​Better adaptability through generalization​

​Implementation Simplicity​ ​Easier to implement​ ​More complex,  requires tuning of network​
​architecture and hyperparameters​
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​MATLAB Support​ ​Supported​ ​with​ ​basic​ ​reinforcement​
​learning frameworks​

​Supported with Reinforcement Learning Toolbox​
​for deep learning integration​

​2.​ ​MATERIALS AND METHOD​

​2.1​ ​Research Framework​
​The​ ​study​ ​adopts​ ​an​ ​experimental,​​comparative​​framework​​to​​evaluate​​reinforcement​​learning​​(RL)–based​
​path​​planning​​for​​autonomous​​mobile​​robots.​​It​​begins​​with​​a​​formal​​definition​​of​​the​​navigation​​problem​​in​
​a​​two-dimensional​​grid-world,​​where​​an​​agent​​must​​traverse​​from​​a​​designated​​start​​cell​​to​​a​​goal​​cell​​while​
​avoiding​ ​obstacles​ ​(Lavalle,​ ​2006).​ ​Two​ ​RL​ ​algorithms—Q-learning​ ​and​ ​Deep​ ​Q-Networks​ ​(DQN)—are​
​subsequently​​implemented​​in​​MATLAB​​(MathWorks,​​2023a,​​2023b).​​A​​simulation​​script​​models​​the​​robot’s​
​interaction​​with​​its​​environment​​using​​reward​​structures​​designed​​to​​encourage​​obstacle​​avoidance​​and​​path​
​efficiency.​ ​To​ ​test​ ​robustness,​ ​multiple​ ​simulation​ ​scenarios​ ​are​ ​developed,​ ​featuring​ ​both​ ​static​ ​obstacle​
​layouts​ ​and​ ​dynamically​ ​changing​ ​environments.​ ​The​ ​performance​ ​of​ ​each​ ​algorithm​ ​is​ ​assessed​ ​using​
​metrics​ ​such​ ​as​ ​path​ ​length,​ ​convergence​ ​rate,​ ​training​ ​time,​ ​execution​ ​time,​ ​and​ ​memory​​usage,​​and​​the​
​results​​are​​compared​​directly​​to​​those​​obtained​​using​​classical​​algorithms​​like​​A*​​and​​Dijkstra’s.​​Finally,​​the​
​collected​ ​data​​are​​analyzed​​through​​visual​​plots,​​learning​​curves,​​and​​statistical​​summaries​​to​​highlight​​the​
​strengths​ ​and​ ​limitations​ ​of​ ​each​ ​method.​ ​This​ ​systematic​ ​approach​ ​ensures​ ​a​ ​rigorous​ ​and​ ​reproducible​
​evaluation of RL methods for real-world path planning applications (​​Sutton​​and Barto, 2018).​

​2.2​ ​Simulation Environment Setup in MATLAB​
​To​ ​evaluate​ ​the​ ​performance​ ​of​ ​RL-based​ ​path​ ​planning​ ​algorithms,​ ​a​ ​simulation​ ​environment​ ​was​
​developed​​in​​MATLAB,​​modeling​​a​​two-dimensional​​grid-world​​to​​represent​​a​​simplified​​robotic​​navigation​
​space.​ ​Each​ ​cell​ ​in​ ​the​ ​grid​ ​denotes​​a​​discrete​​state​​that​​the​​robot​​can​​occupy.​​The​​robot​​navigates​​from​​a​
​predefined​ ​start​ ​point​ ​to​ ​a​ ​goal​ ​point​ ​while​ ​avoiding​ ​randomly​ ​placed​ ​obstacles.​ ​The​ ​environment​ ​is​
​represented​​as​​an​ ​where​​a​​value​​of​​0​​indicates​​a​​free​
​space,​ ​1​ ​indicates​ ​an​ ​obstacle,​​'S'​​represents​​the​​starting​​position,​​and​​'G'​​represents​​the​​goal​​position.​​The​
​state​​space​​consists​​of​​all​​navigable​​(non-obstacle)​​cells​​within​​the​​grid,​​while​​the​​action​​space​​includes​​four​
​possible​​movements:​​up,​​down,​​left,​​and​​right.​​In​​some​​extended​​simulations,​​diagonal​​movements​​are​​also​
​considered.​ ​The​ ​transition​ ​dynamics​ ​are​ ​deterministic,​ ​meaning​ ​the​ ​robot​ ​moves​ ​according​ ​to​ ​the​​chosen​
​action​ ​unless​ ​the​ ​move​ ​results​​in​​a​​collision​​with​​an​​obstacle​​or​​the​​boundary​​of​​the​​environment.​​In​​such​
​cases,​​the​​robot​​remains​​in​​the​​same​​cell​​and​​receives​​a​​penalty.​​A​​carefully​​designed​​reward​​structure​​guides​
​the​​learning​​process:​​reaching​​the​​goal​​yields​​a​​reward​​of​​+100,​​hitting​​an​​obstacle​​or​​boundary​​results​​in​​a​
​penalty of -10, and each movement incurs a small penalty of -1 to encourage shorter paths.​

​To​ ​test​ ​the​ ​robustness​ ​of​ ​the​ ​algorithms,​ ​several​ ​grid​ ​configurations​ ​are​ ​used.​ ​These​ ​include​ ​static​
​environments​​with​​fixed​​obstacle​​layouts,​​as​​well​​as​​dynamic​​environments​​where​​obstacle​​positions​​change​
​either​ ​at​ ​predefined​ ​intervals​ ​or​ ​randomly​ ​during​ ​an​ ​episode.​ ​A​ ​graphical​ ​representation​ ​of​ ​the​ ​grid​ ​is​
​implemented​​using​​MATLAB’s​​plotting​​functions,​​providing​​real-time​​visualization​​of​​the​​agent’s​​path,​​start​
​and​​goal​​locations,​​and​​obstacle​​positions.​​The​​simulation​​environment​​supports​​multiple​​episodes​​and​​trials,​
​tracks​​agent​​performance​​over​​time​​by​​recording​​metrics​​such​​as​​path​​length,​​success​​rate,​​and​​convergence​
​behavior,​ ​and​ ​logs​ ​actions,​ ​states,​ ​and​ ​rewards​ ​for​ ​detailed​ ​performance​ ​analysis.​ ​This​ ​setup​ ​offers​ ​a​
​controlled​​and​​flexible​​platform​​for​​implementing,​​training,​​and​​evaluating​​Q-learning​​and​​DQN​​algorithms​
​under identical experimental conditions.​

​2.3​ ​Q-learning Implementation for Path Planning​
​Q-learning,​​a​​model-free​​reinforcement​​learning​​algorithm,​​enables​​an​​agent​​to​​learn​​an​​optimal​​navigation​
​policy​ ​through​​trial-and-error​​interactions​​with​​the​​environment​​(Bahare,​​2017)​​In​​this​​study,​​Q-learning​​is​
​implemented​ ​in​ ​MATLAB​​to​​allow​​an​​autonomous​​robot​​to​​discover​​efficient​​paths​​from​​a​​start​​point​​to​​a​
​goal​​point​​while​​avoiding​​obstacles​​(Khalil,​​2018).​​The​​implementation​​begins​​with​​the​​initialization​​of​​the​
​Q-table,​ ​which​ ​is​ ​structured​ ​with​ ​dimensions​ ​corresponding​ ​to​ ​the​ ​number​ ​of​ ​states​ ​and​ ​the​ ​number​ ​of​
​possible​​actions.​​Each​​entry​​Q(s,a)Q(s,a)Q(s,a)​​represents​​the​​expected​​future​​reward​​for​​taking​​action​​aaa​​in​
​state​​sss,​​and​​all​​values​​are​​initially​​set​​to​​zero.​​To​​balance​​exploration​​and​​exploitation,​​an​​ε-greedy​​action​
​selection​​strategy​​is​​employed.​​With​​probability​​ε,​​the​​agent​​selects​​a​​random​​action​​(exploration),​​and​​with​
​probability​ ​1−ε1-​ ​\varepsilon1−ε,​ ​it​ ​selects​ ​the​ ​action​ ​with​ ​the​ ​highest​ ​Q-value​ ​in​ ​the​ ​current​ ​state​
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​(exploitation).​​The​​value​​of​​ε​​gradually​​decreases​​over​​the​​course​​of​​training​​to​​favor​​exploitation​​as​​learning​
​progresses.​ ​As​ ​the​ ​agent​ ​interacts​ ​with​ ​the​ ​environment,​ ​it​ ​takes​ ​actions,​ ​observes​ ​resulting​ ​states​ ​and​
​rewards,​​and​​updates​​the​​Q-table.​​If​​an​​action​​leads​​to​​an​​invalid​​move​​(such​​as​​colliding​​with​​an​​obstacle​​or​
​the environment boundary), a penalty is applied. The Q-values are updated using the Bellman equation (1):​

​Q(s,a)←Q(s,a)+α[r+γmaxa′Q(s′,a′)−Q(s,a)]Q(s,a)​ ​(1)​

​where​​α​​is​​the​​learning​​rate,​​γ​​is​​the​​discount​​factor,​​r​​is​​the​​reward​​received​​after​​taking​​action​​a​​in​​state​​s​​,​
​and s′ is the subsequent state.​

​An​​episode​​terminates​​when​​the​​agent​​either​​reaches​​the​​goal​​or​​exceeds​​a​​predefined​​maximum​​number​​of​
​steps.​​Each​​episode​​refines​​the​​Q-table​​based​​on​​the​​accumulated​​experiences.​​The​​training​​loop​​is​​executed​
​over​ ​multiple​ ​episodes,​ ​allowing​ ​the​ ​agent​ ​to​ ​progressively​ ​improve​ ​its​ ​navigation​ ​policy.​ ​Throughout​
​training,​ ​performance​ ​metrics​ ​such​ ​as​ ​the​ ​number​ ​of​ ​steps​ ​to​ ​the​ ​goal,​ ​total​ ​reward​ ​per​ ​episode,​ ​and​
​convergence​ ​rate​ ​are​ ​recorded.​ ​Upon​ ​completion​​of​​training,​​the​​optimal​​navigation​​policy​​is​​extracted​​by​
​selecting,​​at​​each​​state,​​the​​action​​associated​​with​​the​​highest​​Q-value.​​This​​enables​​the​​agent​​to​​follow​​the​
​most efficient path from the starting point to the goal in the learned environment.​

​2.4​ ​Training the Reinforcement Learning Model​
​To​​evaluate​​the​​performance​​of​​reinforcement​​learning​​(RL)​​algorithms​​for​​autonomous​​robot​​navigation,​​a​
​custom​ ​simulation​ ​environment​ ​was​ ​developed​ ​in​ ​MATLAB.​ ​This​ ​environment​ ​models​ ​a​ ​grid-world​
​navigation​​task​​where​​the​​robot​​learns​​to​​move​​from​​a​​defined​​start​​position​​to​​a​​goal​​position​​while​​avoiding​
​obstacles (MathWorks, 2023a, 2023b).​

​2.4.1​ ​Grid-World Environment Design​
​a.​ ​The environment is represented as a 2D grid of size​​N × N​​(e.g., 10×10) (MathWorks,2023b).​
​b.​ ​Each cell in the grid corresponds to a possible state, with specific cells marked as:​

​i.​ ​Start Position (S):​​The robots initial location​
​ii.​ ​Goal Position (G):​​The destination the robot must​​reach​

​iii.​ ​Obstacle cells(X):​​Impassable areas the robot must​​avoid​
​iv.​ ​Free cells:​​Navigable areas in the environment​

​2.4.2​ ​State Space and Action Space​
​a.​ ​State Space:​​Each state is a unique cell in the grid,​​represented by its coordinates (x, y).​
​b.​ ​Action Space:​​The robot can perform one of the following​​actions at each time step:​

​i.​ ​Move​​up​
​ii.​ ​Move​​down​

​iii.​ ​Move​​left​
​iv.​ ​Move​​right​

​c.​ ​Actions that would move the robot off the grid are ignored, and the robot remains in place.​

​2.4.3​ ​Reward Structure​
​The reward function is carefully designed to guide the robot’s behavior:​

​a.​ ​Reaching the goal state:​​+100​
​b.​ ​Colliding with an obstacle:​​−100​
​c.​ ​Each movement step:​​−1​​(to encourage shorter paths)​
​d.​ ​Invalid actions (e.g., moving into a wall):​​−5​

​This structure incentivizes the agent to reach the goal efficiently while avoiding obstacles.​

​2.4.4​ ​Episode Configuration​
​Each​​episode​​begins​​with​​the​​robot​​placed​​at​​the​​start​​position.​​The​​episode​​ends​​when​​the​​robot​​reaches​​the​
​goal, hits an obstacle, or exceeds the maximum number of allowed steps. A typical episode limit is 200 steps.​

​2.4.5​ ​Simulation Parameters​
​The following parameters in Table 2 are used during training.​

​2.4.6​ ​Visualization and Monitoring​
​The​ ​simulation​ ​is​ ​visualized​ ​using​ ​MATLAB’s​ ​plotting​ ​functions​ ​to​ ​track​ ​the​ ​robot's​ ​path.​ ​Performance​
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​metrics​​such​​as​​cumulative​​rewards,​​steps​​taken​​per​​episode,​​and​​success​​rate​​are​​logged.​​A​​graph​​of​​episode​
​reward​ ​vs.​ ​number​ ​of​ ​episodes​ ​is​ ​plotted​ ​to​ ​visualize​ ​learning​ ​progress.​ ​This​ ​environment​ ​setup​ ​ensures​
​consistency​​between​​Q-learning​​and​​DQN​​implementations,​​enabling​​fair​​comparison​​and​​insightful​​analysis​
​of learning performance in controlled simulated conditions (Corke, 2017).​

​Table 2: Parametric Table​

​Parameter​ ​Value​

​Grid size​ ​10 × 10​

​Maximum steps per episode​ ​200​

​Number of episodes​ ​1000 (or until convergence)​

​Discount factor (γ)​ ​0.95​

​Learning rate (α)​ ​0.001 (DQN), 0.1 (Q-learning)​

​Exploration rate (ε)​ ​Starts at 1.0, decays to 0.01​

​Replay buffer size​ ​5000 (DQN)​

​Batch size​ ​64 (DQN)​

​Target network update rate Every 10​
​episodes​

​(DQN)​

​2.5​ ​Parameter Selection and Optimization​
​To​ ​evaluate​ ​the​ ​performance​ ​of​ ​the​ ​reinforcement​ ​learning​​algorithms​​for​​autonomous​​robot​​navigation,​​a​
​custom​​simulation​​environment​​was​​designed​​in​​MATLAB.​​The​​environment​​emulates​​a​​grid-world​​scenario​
​that​ ​models​ ​a​ ​simplified​ ​real-world​ ​navigation​​task.​​The​​robot​​must​​learn​​to​​move​​from​​a​​predefined​​start​
​position to a goal position while avoiding obstacles.​

​2.5.1​ ​Path​​Efficiency:​ ​Path​​efficiency​​measures​​how​​effectively​​the​​robot​​navigates​​from​​the​​start​​to​​the​
​goal while avoiding obstacles. The primary components of this metric include:​

​a.​ ​The Path Length​​, which is the total number of steps​​taken by the robot to reach the goal.​
​b.​ ​Optimal​ ​Path​ ​Comparison:​ ​This​ ​involves​ ​comparing​ ​the​ ​learned​ ​path​ ​with​ ​the​ ​shortest​

​possible​​path,​​which​​is​​computed​​using​​the​​traditional​​A*​​or​​Dijkstra’s​​algorithm​​for​​the​​same​
​environment.​ ​The​ ​efficiency​ ​is​ ​assessed​ ​by​ ​the​ ​deviation​ ​from​ ​the​ ​optimal​ ​path.​
​Mathematically (Eq.2):​

​(2)​

​A​​value​​of​​1​​indicates​​that​​the​​RL​​algorithm​​has​​learned​​an​​optimal​​path,​​while​​values​​greater​​than​​1​​indicate​
​less efficient paths.​

​2.5.2​ ​Convergence​ ​Rate:​ ​Convergence​ ​rate​ ​refers​ ​to​ ​the​ ​speed​ ​at​ ​which​ ​the​ ​RL​ ​algorithm​ ​reaches​ ​an​
​optimal​ ​or​ ​nearoptimal​ ​policy.​ ​This​ ​metric​ ​is​ ​especially​ ​important​ ​to​ ​evaluate​ ​how​ ​quickly​ ​the​ ​learning​
​process stabilizes.​

​2.5.3​ ​Number​ ​of​ ​Episodes​ ​to​ ​Convergence:​ ​This​ ​tracks​ ​the​ ​number​ ​of​​episodes​​the​​algorithm​​takes​​to​
​converge to a stable solution, where the path length and rewards remain consistent across episodes.​
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​2.5.4​ ​Learning​​Curve:​ ​The​​performance​​of​​the​​RL​​agent​​is​​plotted​​over​​time​​(episodes)​​to​​visualize​​how​
​quickly​​it​​learns​​to​​navigate​​efficiently.​​The​​goal​​is​​to​​assess​​how​​quickly​​the​​RL​​agent​​can​​adapt​​its​​policy​
​compared​ ​to​ ​traditional​ ​algorithms,​ ​which​ ​typically​ ​solve​ ​for​ ​the​ ​optimal​ ​path​ ​in​ ​a​ ​one-time​​computation​
​without learning (Ogata, 2010).​

​2.5.6​ ​Success​ ​Rate:​ ​The​ ​success​ ​rate​​evaluates​​the​​ability​​of​​the​​RL​​algorithm​​to​​consistently​​reach​​the​
​goal​ ​from​ ​the​ ​start​ ​position​ ​without​ ​encountering​ ​an​ ​obstacle​ ​or​ ​exceeding​ ​the​ ​maximum​ ​allowed​ ​steps​
​(Thrun​​et​​al.,​​2005).​​It​​is​​defined​​as​​the​​ratio​​of​​episodes​​in​​which​​the​​robot​​successfully​​reaches​​the​​goal​​to​
​the total number of episodes (Eq.3).​

​(3)​

​Higher​ ​success​ ​rates​ ​indicate​ ​better​ ​performance​ ​of​ ​the​ ​RL​ ​algorithm​ ​in​ ​learning​ ​a​ ​reliable​ ​policy​ ​that​
​enables the robot to reach the goal.​

​2.5.7​ ​Exploration​ ​vs.​ ​Exploitation​ ​Balance:​ ​In​ ​reinforcement​ ​learning,​ ​the​ ​agent​ ​must​ ​balance​
​exploration​ ​(trying​ ​new​ ​actions)​ ​and​ ​exploitation​ ​(choosing​ ​the​ ​best-known​ ​action).​ ​The​ ​evaluation​ ​of​
​exploration​ ​vs.​ ​exploitation​ ​is​ ​crucial​ ​for​ ​understanding​ ​how​ ​the​​RL​​model​​adjusts​​its​​behavior​​over​​time.​
​Key points include:​

​a.​ ​Exploration​​Rate​​(ε):​ ​How​​often​​the​​algorithm​​explores​​new​​actions​​rather​​than​​exploiting​​learned​
​actions.​ ​This​ ​is​ ​tracked​ ​during​ ​training​ ​to​ ​determine​ ​if​ ​the​ ​agent​ ​sufficiently​ ​explores​ ​its​
​environment to learn effective policies.​

​b.​ ​Exploitation​ ​Rate:​ ​How​ ​often​ ​the​ ​agent​ ​selects​ ​actions​​that​​maximize​​the​​expected​​reward​​(i.e.,​
​follows the learned policy).​

​The​ ​balance​ ​between​ ​these​ ​two​ ​influences​ ​the​ ​quality​ ​of​ ​learning​ ​and​ ​convergence.​ ​A​ ​welltuned​ ​agent​
​gradually shifts from exploration to exploitation as it learns the optimal path.​

​2.5.8​ ​Computational​​Complexity:​ ​Computational​​complexity​​evaluates​​the​​efficiency​​of​​the​​algorithms​​in​
​terms​ ​of​ ​time​ ​and​ ​resource​ ​consumption.​ ​This​ ​is​ ​especially​ ​important​ ​for​ ​real-time​ ​applications​ ​where​
​computational resources are limited. The key aspects to be considered include:​

​a.​ ​Training​ ​Time:​ ​The​ ​total​ ​amount​ ​of​ ​time​ ​required​ ​to​​train​​the​​RL​​agent​​until​​convergence.​​This​
​includes the time taken for each episode and the cumulative time across all episodes.​

​b.​ ​Memory​​Usage:​ ​The​​memory​​required​​to​​store​​the​​Q-table​​(for​​Q-learning)​​or​​the​​neural​​network​
​(for DQN), as well as the replay buffer for storing experiences.​

​c.​ ​Processing​ ​Power:​ ​The​ ​computational​ ​resources​ ​(e.g.,​​CPU,​​GPU)​​needed​​to​​run​​the​​algorithms,​
​particularly for DQN which relies on deep learning.​

​2.5.9​ ​Path​​Optimality:​ ​Path​​optimality​​is​​measured​​by​​the​​algorithm’s​​ability​​to​​find​​the​​shortest​​possible​
​path while avoiding obstacles. This is quantified by:​

​a.​ ​Path​​Optimality​​Index​​(POI):​ ​This​​metric​​compares​​the​​total​​number​​of​​steps​​taken​​to​​reach​​the​
​goal​​with​​the​​shortest​​possible​​path​​(calculated​​using​​traditional​​methods​​such​​as​​A*​​or​​Dijkstra's).​
​A lower POI indicates better path optimization (Zhu et al.,2017).​

​2.5.10​​Adaptability​​to​​Dynamic​​Environments:​ ​One​​of​​the​​main​​advantages​​of​​reinforcement​​learning​​is​​its​
​adaptability​​to​​changes​​in​​the​​environment.​​The​​adaptability​​metric​​evaluates​​how​​well​​the​​RL​​algorithms​​can​
​handle dynamic changes, such as:​

​a.​ ​Obstacle​​Movement:​ ​If​​obstacles​​are​​randomly​​moved​​during​​the​​training​​process,​​the​​algorithm's​
​ability to adapt to new configurations is tested.​

​b.​ ​Goal​​Relocation:​ ​Changing​​the​​goal​​position​​during​​training​​and​​evaluating​​the​​robot’s​​ability​​to​
​adjust its policy accordingly.​
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​The​ ​adaptability​ ​of​ ​the​ ​model​ ​is​ ​assessed​ ​based​ ​on​ ​the​ ​algorithm’s​​ability​​to​​still​​find​​efficient​​paths​​after​
​these changes.​

​3.​ ​RESULTS AND DISCUSSION​

​Figures​ ​1-4​ ​present​ ​the​ ​results​ ​from​ ​the​ ​experiments​ ​conducted​ ​to​ ​evaluate​ ​the​ ​performance​ ​of​ ​the​
​reinforcement​​learning​​(RL)-based​​path-planning​​algorithms—Q-learning​​and​​Deep​​QNetworks​​(DQN)—as​
​compared​ ​to​ ​traditional​ ​algorithms​ ​(A*​ ​and​ ​Dijkstra's).​ ​The​ ​evaluation​ ​is​ ​carried​ ​out​ ​in​ ​a​ ​simulated​
​grid-world​ ​environment​ ​created​ ​in​ ​MATLAB.​ ​The​ ​experiments​ ​were​ ​designed​ ​to​ ​assess​ ​the​ ​efficiency,​
​adaptability, and computational complexity of each algorithm.​

​.​

​Figure 1: Episode Reward vs Episode Number​ ​Figure 2: Steps to Goal vs Episode Number​

​Figure​​3:​​Final​​Path​​Visualization​​Over​​Grid​​Map​ ​Figure​ ​4:​ ​Epsilon​ ​Decay​ ​Curve​ ​(Exploration​
​Strategy)​

​3.1​ ​Discussion on Findings​
​The​ ​results​ ​indicate​ ​that​​both​​Q-learning​​and​​DQN​​show​​significant​​potential​​in​​autonomous​​mobile​​robot​
​path​ ​planning,​ ​especially​ ​in​ ​dynamic​ ​environments.​ ​While​ ​traditional​ ​algorithms​ ​like​ ​A*​ ​and​ ​Dijkstra’s​
​guarantee​ ​optimality​ ​in​ ​static​ ​conditions,​ ​they​ ​fail​ ​to​ ​adapt​ ​to​ ​changes​ ​in​ ​real-time.​ ​On​ ​the​ ​other​ ​hand,​
​RL-based​ ​methods,​ ​particularly​​DQN,​​offer​​greater​​adaptability,​​making​​them​​more​​suitable​​for​​real-world​
​applications.​
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​3.1.1​ ​Advantages of RL-based Methods:​
​i.​ ​Adaptability:​ ​RL​​algorithms​​can​​adjust​​to​​changes​​in​​the​​environment​​without​​requiring​​a​​full​

​re-computation of the path.​
​ii.​ ​Efficiency​​in​​Dynamic​​Environments:​​DQN​​showed​​faster​​convergence​​and​​better​​adaptability​

​compared​ ​to​ ​Q-learning,​ ​making​ ​it​ ​more​ ​effective​ ​in​ ​realworld​ ​scenarios​​where​​environments​
​change over time.​

​iii.​ ​Scalability:​ ​Both​ ​Q-learning​​and​​DQN​​showed​​potential​​to​​scale​​to​​larger​​grid​​sizes​​and​​more​
​complex environments, though DQN is more computationally demanding.​

​3.1.2​ ​Limitations:​
​i.​ ​Computational​ ​Complexity:​ ​DQN​ ​requires​ ​more​ ​resources​ ​compared​ ​to​ ​Qlearning​ ​and​

​traditional​ ​algorithms,​ ​making​ ​it​ ​less​ ​suitable​ ​for​ ​environments​ ​with​ ​limited​ ​computational​
​power.​

​3.1.3​ ​Training​​Time:​ ​Both​​Q-learning​​and​​DQN​​require​​a​​significant​​amount​​of​​training​​time,​​especially​
​in dynamic environments.​

​4.​ ​CONCLUSION​

​This​​research​​investigated​​the​​application​​of​​reinforcement​​learning​​(RL)​​for​​autonomous​​mobile​​robot​​path​
​planning​ ​in​ ​dynamic​ ​environments​ ​using​ ​MATLAB​ ​simulations.​ ​The​ ​study​ ​focused​ ​on​ ​two​ ​RL​
​algorithms—Q-learning​ ​and​ ​Deep​​Q-Network​​(DQN)—and​​evaluated​​their​​performance​​against​​traditional​
​path-planning​ ​algorithms​​such​​as​​A*​​and​​Dijkstra’s.​​The​​results​​demonstrated​​that​​while​​A*​​and​​Dijkstra’s​
​algorithms​​perform​​optimally​​in​​static​​environments,​​they​​struggle​​to​​adapt​​to​​dynamic​​changes.​​In​​contrast,​
​the​ ​RL-based​ ​approaches,​ ​particularly​ ​DQN,​ ​showcased​ ​superior​ ​adaptability​ ​and​ ​learning​ ​efficiency.​
​Qlearning,​​though​​simpler​​and​​less​​computationally​​intensive,​​required​​more​​training​​episodes​​and​​exhibited​
​slower​ ​convergence​ ​than​ ​DQN.​ ​DQN​ ​outperformed​ ​Q-learning​ ​in​ ​terms​ ​of​ ​convergence​ ​speed,​ ​path​
​optimality,​ ​and​ ​robustness​ ​in​ ​changing​ ​environments​ ​due​ ​to​ ​its​ ​ability​ ​to​ ​generalize​​learning​​using​​neural​
​networks.​​However,​​the​​increased​​computational​​complexity​​of​​DQN​​highlights​​a​​trade-off​​between​​learning​
​performance​​and​​hardware​​requirements.​​Overall,​​this​​study​​supports​​the​​viability​​of​​RL-based​​methods​​for​
​real-world​ ​autonomous​ ​robot​ ​navigation​​tasks​​where​​environments​​are​​uncertain​​or​​subject​​to​​change.​​The​
​insights​​gained​​from​​the​​MATLAB​​simulations​​provide​​a​​foundation​​for​​further​​exploration​​and​​real-world​
​implementation of intelligent navigation systems.​
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