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Abstract

Path planning is a critical component of autonomous mobile robots, allowing them to Keywords
navigate their environment efficiently while avoiding obstacles. Traditional algorithms Autonomous,
such as A* and Dijkstra’s provide optimal solutions based on predefined maps but Path Planning,
struggle with adaptability in dynamic and unknown environments. These limitations Reinforcement,
necessitate the adoption of machine learning-based approaches such as Reinforcement Navigate,
Learning (RL). RL, particularly Q-learning and Deep Q-Networks (DQN), enables Learning

robots to learn optimal navigation strategies through continuous interaction with their
surroundings, allowing them to adapt to environmental changes. This research
implements and evaluates Q-learning and DQN in MATLAB, training autonomous
robots in a simulated environment to navigate obstacles while optimizing path
efficiency. The study compares RL-based path planning with traditional algorithms (A*
and Dijkstra’s) by assessing computational complexity, adaptability, and performance in
dynamic scenarios. Key findings highlight the effectiveness of RL-based methods in
improving realtime decision-making and adaptability, but also expose challenges such
as high computational demands and convergence issues. The research provides insights
into the applicability of RL for autonomous robot navigation and proposes potential
optimizations for real-world deployment.

1. INTRODUCTION

As autonomous robots increasingly find applications in industries such as logistics, surveillance, healthcare,
and transportation, the demand for efficient, adaptive path-planning algorithms becomes more critical.
Traditional methods, such as rule-based systems and heuristic approaches like A* and Dijkstra’s algorithm,
rely on predefined maps and deterministic rules (Sutton and Barto, 2018). While these methods guarantee
optimal paths in static environments, they struggle to perform in dynamic and uncertain settings where
obstacles and goals can change unpredictably. Reinforcement learning (RL) offers a promising alternative,
enabling robots to learn optimal navigation strategies through interaction with their environment. Unlike
traditional methods that depend on precomputed paths, RL-based algorithms adapt by continuously refining
their decision-making policies based on experience. This adaptive approach proves especially beneficial in
environments characterized by uncertainty, unexpected obstacles, and real-time decision-making needs.
Among various RL techniques, Q-learning and Deep Q-Networks (DQN) have been widely explored due to
their ability to handle discrete and continuous state spaces, respectively (Sutton and Barto, 2018).

This study investigates the implementation of RL-based path-planning algorithms in MATLAB, comparing
their performance against conventional methods. By evaluating efficiency, adaptability, and computational
complexity, the research aims to provide insights into the practical viability of RL for autonomous navigation
in real-world scenarios. Traditional path-planning algorithms, such as A* and Dijkstra’s, are effective in
structured, static environments where obstacles and paths remain unchanged. These methods compute
optimal paths based on predefined maps and deterministic rules, ensuring reliable navigation in well-defined
settings. However, in dynamic or unpredictable environments where obstacles may appear, move, or change,
these algorithms struggle to adapt, necessitating real-time decision-making (Wang et al.,2020).
Reinforcement learning (RL)-based approaches offer a robust solution by enabling robots to learn navigation
strategies through continuous interaction with their environment (Sutton and Barto, 2018). Unlike
conventional algorithms, RL methods do not require prior knowledge of the environment, making them
particularly suitable for real-world applications. Despite their potential, several challenges must be addressed
to make RL-based path planning both practical and efficient in dynamic environments (Zhu et al., 2017).
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One key challenge is the convergence speed of RL algorithms. Many RL techniques, such as Q-learning and
DQN, require substantial training time to learn an optimal policy, which may be impractical in real-time
settings(Mnih et al., 2015). Another issue is learning efficiency: the effectiveness of RL depends heavily on
the exploration-exploitation balance and the design of appropriate reward functions that guide the agent
toward optimal paths. Finally, the computational cost of RL methods, particularly deep RL approaches like
Deep Q-Networks (DQN), is a significant concern due to the high-dimensional state spaces they involve,
which demand considerable computational resources for both training and real-time execution (Lillicap et
al.,2021). Addressing these challenges is crucial for realizing the potential of RL-based path planning as a
viable alternative to traditional methods. This research explores the implementation of RL techniques in
MATLAB, assessing their efficiency, adaptability, and suitability for real-world autonomous navigation
applications.

This study makes a significant contribution to the evolving field of autonomous mobile robotics by exploring
the application of Reinforcement Learning (RL) algorithms—specifically Q- Learning and Deep Q-Networks
(DQN)—to the path-planning problem. While traditional algorithms such as A* and Dijkstra’s remain
reliable in structured environments, they often lack the adaptability required for real-world, dynamic
conditions (Bahare et al., 2017). By demonstrating the implementation and effectiveness of RL-based
strategies in a MATLAB-simulated environment, this research bridges the gap between theoretical models
and practical deployment. The significance of this work lies in its ability to inform the development of
intelligent navigation systems capable of autonomously adapting to environmental changes without human
intervention (Arulkuraman et al., 2017). Insights gained from the comparative analysis of RL-based methods
and traditional algorithms provide a foundation for designing more resilient and responsive robotic systems
across various industries, including logistics, surveillance, healthcare, disaster response, and smart
manufacturing (Zhang et al.,2021).

Moreover, the research contributes to academic literature by offering a reproducible simulation framework
and detailed performance analysis, serving as a reference for further studies in robot learning, control
systems, and artificial intelligence applications. It highlights both the potential and the challenges of using
machine learning techniques in robotics, encouraging ongoing innovation in adaptive path planning and
autonomous decision-making (Bahare et al., 2017). Q-learning and Deep Q-Networks (DQN) are both
model-free reinforcement learning algorithms that aim to learn optimal policies by interacting with the
environment (Open ai,2018). However, they differ significantly in terms of architecture, scalability, and
suitability for complex robotic path planning tasks. : A summary of theoretical review is shown in Table 1.

Table 1: Summary of Theoretical Review

Criteria Q-Learning Deep Q-Network (DQN)

State Representation Discrete states, often limited to small Supports large and continuous state spaces using
environments deep neural networks

Q-Function Stored as a Q-table Approximated using a neural network

Scalability Poor scalability to High dimensional Highly scalable with deep learning
environments

Learning Efficiency Fast for simple tasks, becomes infeasible =~ More efficient for complex environments but
as state space grows requires longer training

Memory Requirements Minimal Higher, due to neural networks and experience

replay buffer
Training Stability Generally stable in small environments Prone to instability without techniques like target

networks and experience replay

Adaptability to Dynamic Limited, requires retraining Better adaptability through generalization
Environments for new environments
Implementation Simplicity  Easier to implement More complex, requires tuning of network

architecture and hyperparameters

A Publication of the Faculty Engineering, Osun State University, Osogbo, Nigeria
19



Uniosun Journal of Engineering and Environmental Sciences (UJEES), Vol. 7 No. 2, Sept. 2025

DOI: https//doi.org/10.64980/ujees.v7i2.433 W. O. Adedeji
Published: September 30, 2025

MATLAB Support Supported with Dbasic reinforcement Supported with Reinforcement Learning Toolbox
learning frameworks for deep learning integration

2. MATERIALS AND METHOD

2.1 Research Framework

The study adopts an experimental, comparative framework to evaluate reinforcement learning (RL)-based
path planning for autonomous mobile robots. It begins with a formal definition of the navigation problem in
a two-dimensional grid-world, where an agent must traverse from a designated start cell to a goal cell while
avoiding obstacles (Lavalle, 2006). Two RL algorithms—Q-learning and Deep Q-Networks (DQN)—are
subsequently implemented in MATLAB (MathWorks, 2023a, 2023b). A simulation script models the robot’s
interaction with its environment using reward structures designed to encourage obstacle avoidance and path
efficiency. To test robustness, multiple simulation scenarios are developed, featuring both static obstacle
layouts and dynamically changing environments. The performance of each algorithm is assessed using
metrics such as path length, convergence rate, training time, execution time, and memory usage, and the
results are compared directly to those obtained using classical algorithms like A* and Dijkstra’s. Finally, the
collected data are analyzed through visual plots, learning curves, and statistical summaries to highlight the
strengths and limitations of each method. This systematic approach ensures a rigorous and reproducible
evaluation of RL methods for real-world path planning applications (Sutton and Barto, 2018).

2.2 Simulation Environment Setup in MATLAB

To evaluate the performance of RL-based path planning algorithms, a simulation environment was
developed in MATLAB, modeling a two-dimensional grid-world to represent a simplified robotic navigation
space. Each cell in the grid denotes a discrete state that the robot can occupy. The robot navigates from a
predefined start point to a goal point while avoiding randomly placed obstacles. The environment is

represented as an 1! X N by nn x n matrix nx nn by nn X n matrix where a value of 0 indicates a free
space, 1 indicates an obstacle, 'S' represents the starting position, and 'G' represents the goal position. The
state space consists of all navigable (non-obstacle) cells within the grid, while the action space includes four
possible movements: up, down, left, and right. In some extended simulations, diagonal movements are also
considered. The transition dynamics are deterministic, meaning the robot moves according to the chosen
action unless the move results in a collision with an obstacle or the boundary of the environment. In such
cases, the robot remains in the same cell and receives a penalty. A carefully designed reward structure guides
the learning process: reaching the goal yields a reward of +100, hitting an obstacle or boundary results in a
penalty of -10, and each movement incurs a small penalty of -1 to encourage shorter paths.

To test the robustness of the algorithms, several grid configurations are used. These include static
environments with fixed obstacle layouts, as well as dynamic environments where obstacle positions change
either at predefined intervals or randomly during an episode. A graphical representation of the grid is
implemented using MATLAB’s plotting functions, providing real-time visualization of the agent’s path, start
and goal locations, and obstacle positions. The simulation environment supports multiple episodes and trials,
tracks agent performance over time by recording metrics such as path length, success rate, and convergence
behavior, and logs actions, states, and rewards for detailed performance analysis. This setup offers a
controlled and flexible platform for implementing, training, and evaluating Q-learning and DQN algorithms
under identical experimental conditions.

2.3 Q-learning Implementation for Path Planning

Q-learning, a model-free reinforcement learning algorithm, enables an agent to learn an optimal navigation
policy through trial-and-error interactions with the environment (Bahare, 2017) In this study, Q-learning is
implemented in MATLAB to allow an autonomous robot to discover efficient paths from a start point to a
goal point while avoiding obstacles (Khalil, 2018). The implementation begins with the initialization of the
Q-table, which is structured with dimensions corresponding to the number of states and the number of
possible actions. Each entry Q(s,a)Q(s,a)Q(s,a) represents the expected future reward for taking action aaa in
state sss, and all values are initially set to zero. To balance exploration and exploitation, an g-greedy action
selection strategy is employed. With probability ¢, the agent selects a random action (exploration), and with
probability 1—el- \varepsilonl—e, it selects the action with the highest Q-value in the current state
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(exploitation). The value of € gradually decreases over the course of training to favor exploitation as learning
progresses. As the agent interacts with the environment, it takes actions, observes resulting states and
rewards, and updates the Q-table. If an action leads to an invalid move (such as colliding with an obstacle or
the environment boundary), a penalty is applied. The Q-values are updated using the Bellman equation (1):

Q(s,a)—Q(s,a)+a[rtymaxa’Q(s’,a’)~Q(s,a)]Q(s,a) ()

where o is the learning rate, v is the discount factor, r is the reward received after taking action « in state s,
and s’ is the subsequent state.

An episode terminates when the agent either reaches the goal or exceeds a predefined maximum number of
steps. Each episode refines the Q-table based on the accumulated experiences. The training loop is executed
over multiple episodes, allowing the agent to progressively improve its navigation policy. Throughout
training, performance metrics such as the number of steps to the goal, total reward per episode, and
convergence rate are recorded. Upon completion of training, the optimal navigation policy is extracted by
selecting, at each state, the action associated with the highest Q-value. This enables the agent to follow the
most efficient path from the starting point to the goal in the learned environment.

2.4 Training the Reinforcement Learning Model

To evaluate the performance of reinforcement learning (RL) algorithms for autonomous robot navigation, a
custom simulation environment was developed in MATLAB. This environment models a grid-world
navigation task where the robot learns to move from a defined start position to a goal position while avoiding
obstacles (MathWorks, 2023a, 2023b).

2.4.1  Grid-World Environment Design
a. The environment is represented as a 2D grid of size N x N (e.g., 10x10) (MathWorks,2023b).
b. Each cell in the grid corresponds to a possible state, with specific cells marked as:
i. Start Position (S): The robots initial location
ii. Goal Position (G): The destination the robot must reach
iii. Obstacle cells(X): Impassable areas the robot must avoid
iv. Free cells: Navigable areas in the environment

2.4.2  State Space and Action Space
a. State Space: Each state is a unique cell in the grid, represented by its coordinates (x, y).
b. Action Space: The robot can perform one of the following actions at each time step:

i. Move up
1. Move down
11i. Move left

iv. Move right
c. Actions that would move the robot off the grid are ignored, and the robot remains in place.

2.4.3  Reward Structure
The reward function is carefully designed to guide the robot’s behavior:
a. Reaching the goal state: +100
b. Colliding with an obstacle: =100
c. Each movement step: —1 (to encourage shorter paths)
d. Invalid actions (e.g., moving into a wall): =5
This structure incentivizes the agent to reach the goal efficiently while avoiding obstacles.

2.4.4  Episode Configuration
Each episode begins with the robot placed at the start position. The episode ends when the robot reaches the
goal, hits an obstacle, or exceeds the maximum number of allowed steps. A typical episode limit is 200 steps.

2.4.5  Simulation Parameters
The following parameters in Table 2 are used during training.

2.4.6  Visualization and Monitoring
The simulation is visualized using MATLAB’s plotting functions to track the robot's path. Performance
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metrics such as cumulative rewards, steps taken per episode, and success rate are logged. A graph of episode
reward vs. number of episodes is plotted to visualize learning progress. This environment setup ensures
consistency between Q-learning and DQN implementations, enabling fair comparison and insightful analysis
of learning performance in controlled simulated conditions (Corke, 2017).

Table 2: Parametric Table

Parameter Value
Grid size 10 x 10
Maximum steps per episode 200
Number of episodes 1000 (or until convergence)
Discount factor (y) 0.95
Learning rate (o) 0.001 (DQN), 0.1 (Q-learning)
Exploration rate (g) Starts at 1.0, decays to 0.01
Replay buffer size 5000 (DQN)
Batch size 64 (DQN)
Target network update rate Every 10 (DQN)
episodes
2.5 Parameter Selection and Optimization

To evaluate the performance of the reinforcement learning algorithms for autonomous robot navigation, a
custom simulation environment was designed in MATLAB. The environment emulates a grid-world scenario
that models a simplified real-world navigation task. The robot must learn to move from a predefined start
position to a goal position while avoiding obstacles.

2.5.1  Path Efficiency: Path efficiency measures how effectively the robot navigates from the start to the
goal while avoiding obstacles. The primary components of this metric include:

a. The Path Length, which is the total number of steps taken by the robot to reach the goal.

b. Optimal Path Comparison: This involves comparing the learned path with the shortest
possible path, which is computed using the traditional A* or Dijkstra’s algorithm for the same
environment. The efficiency is assessed by the deviation from the optimal path.
Mathematically (Eq.2):

lenght of learned path lenght of learned path

path efficiency = path efficiency =

lenght of optical path

2

lenght of optical path

A value of 1 indicates that the RL algorithm has learned an optimal path, while values greater than 1 indicate
less efficient paths.

2.5.2  Convergence Rate: Convergence rate refers to the speed at which the RL algorithm reaches an
optimal or nearoptimal policy. This metric is especially important to evaluate how quickly the learning
process stabilizes.

2.5.3  Number of Episodes to Convergence: This tracks the number of episodes the algorithm takes to
converge to a stable solution, where the path length and rewards remain consistent across episodes.
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2.5.4  Learning Curve: The performance of the RL agent is plotted over time (episodes) to visualize how
quickly it learns to navigate efficiently. The goal is to assess how quickly the RL agent can adapt its policy
compared to traditional algorithms, which typically solve for the optimal path in a one-time computation
without learning (Ogata, 2010).

2.5.6  Success Rate: The success rate evaluates the ability of the RL algorithm to consistently reach the
goal from the start position without encountering an obstacle or exceeding the maximum allowed steps
(Thrun et al., 2005). It is defined as the ratio of episodes in which the robot successfully reaches the goal to
the total number of episodes (Eq.3).

number of succesful episode number of succesful episode
sucess rate = x 100 sucess rate =

total episode total episode

x 100
3)

Higher success rates indicate better performance of the RL algorithm in learning a reliable policy that
enables the robot to reach the goal.

2.5.7  Exploration vs. Exploitation Balance: In reinforcement learning, the agent must balance
exploration (trying new actions) and exploitation (choosing the best-known action). The evaluation of
exploration vs. exploitation is crucial for understanding how the RL model adjusts its behavior over time.
Key points include:

a. Exploration Rate (g): How often the algorithm explores new actions rather than exploiting learned
actions. This is tracked during training to determine if the agent sufficiently explores its
environment to learn effective policies.

b. Exploitation Rate: How often the agent selects actions that maximize the expected reward (i.e.,
follows the learned policy).

The balance between these two influences the quality of learning and convergence. A welltuned agent
gradually shifts from exploration to exploitation as it learns the optimal path.

2.5.8  Computational Complexity: Computational complexity evaluates the efficiency of the algorithms in
terms of time and resource consumption. This is especially important for real-time applications where
computational resources are limited. The key aspects to be considered include:

a. Training Time: The total amount of time required to train the RL agent until convergence. This
includes the time taken for each episode and the cumulative time across all episodes.

b. Memory Usage: The memory required to store the Q-table (for Q-learning) or the neural network
(for DQN), as well as the replay buffer for storing experiences.

c. Processing Power: The computational resources (e.g., CPU, GPU) needed to run the algorithms,
particularly for DQN which relies on deep learning.

2.5.9  Path Optimality: Path optimality is measured by the algorithm’s ability to find the shortest possible
path while avoiding obstacles. This is quantified by:

a.  Path Optimality Index (POI): This metric compares the total number of steps taken to reach the
goal with the shortest possible path (calculated using traditional methods such as A* or Dijkstra's).
A lower POI indicates better path optimization (Zhu et al.,2017).

2.5.10 Adaptability to Dynamic Environments: One of the main advantages of reinforcement learning is its
adaptability to changes in the environment. The adaptability metric evaluates how well the RL algorithms can
handle dynamic changes, such as:

a. Obstacle Movement: If obstacles are randomly moved during the training process, the algorithm's
ability to adapt to new configurations is tested.

b. Goal Relocation: Changing the goal position during training and evaluating the robot’s ability to
adjust its policy accordingly.
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The adaptability of the model is assessed based on the algorithm’s ability to still find efficient paths after
these changes.

3. RESULTS AND DISCUSSION

Figures 1-4 present the results from the experiments conducted to evaluate the performance of the
reinforcement learning (RL)-based path-planning algorithms—Q-learning and Deep QNetworks (DQN)—as
compared to traditional algorithms (A* and Dijkstra's). The evaluation is carried out in a simulated
grid-world environment created in MATLAB. The experiments were designed to assess the efficiency,
adaptability, and computational complexity of each algorithm.
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3.1 Discussion on Findings

The results indicate that both Q-learning and DQN show significant potential in autonomous mobile robot
path planning, especially in dynamic environments. While traditional algorithms like A* and Dijkstra’s
guarantee optimality in static conditions, they fail to adapt to changes in real-time. On the other hand,
RL-based methods, particularly DQN, offer greater adaptability, making them more suitable for real-world
applications.
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3.1.1  Advantages of RL-based Methods:

i Adaptability: RL algorithms can adjust to changes in the environment without requiring a full
re-computation of the path.
il. Efficiency in Dynamic Environments: DQN showed faster convergence and better adaptability

compared to Q-learning, making it more effective in realworld scenarios where environments
change over time.

ii. Scalability: Both Q-learning and DQN showed potential to scale to larger grid sizes and more
complex environments, though DQN is more computationally demanding.

3.1.2  Limitations:

. Computational Complexity: DQN requires more resources compared to Qlearning and
traditional algorithms, making it less suitable for environments with limited computational
power.

3.1.3  Training Time: Both Q-learning and DQN require a significant amount of training time, especially
in dynamic environments.

4. CONCLUSION

This research investigated the application of reinforcement learning (RL) for autonomous mobile robot path
planning in dynamic environments using MATLAB simulations. The study focused on two RL
algorithms—Q-learning and Deep Q-Network (DQN)—and evaluated their performance against traditional
path-planning algorithms such as A* and Dijkstra’s. The results demonstrated that while A* and Dijkstra’s
algorithms perform optimally in static environments, they struggle to adapt to dynamic changes. In contrast,
the RL-based approaches, particularly DQN, showcased superior adaptability and learning efficiency.
Qlearning, though simpler and less computationally intensive, required more training episodes and exhibited
slower convergence than DQN. DQN outperformed Q-learning in terms of convergence speed, path
optimality, and robustness in changing environments due to its ability to generalize learning using neural
networks. However, the increased computational complexity of DQN highlights a trade-off between learning
performance and hardware requirements. Overall, this study supports the viability of RL-based methods for
real-world autonomous robot navigation tasks where environments are uncertain or subject to change. The
insights gained from the MATLAB simulations provide a foundation for further exploration and real-world
implementation of intelligent navigation systems.
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